Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором производят измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам. При этом на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, кроме того до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча. Технический результат - определение линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм. 1 ил.

 

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок.

Известен способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, в качестве которой используют один из элементов оптической схемы эллипсометра - плоскопараллельную пластину одноосного кристалла (компенсатор). Для регулирования температуры компенсатора применялась «термостатированная» ячейка, встроенная в оптическую систему. После определения оптических параметров Δ и ψ линейный коэффициент теплового расширения α пластины определяли из разницы толщин α=(d-d0)/d0ΔT , где d и d0 – толщины пластины при различных температурах, ΔT – разница температур). Толщина напрямую связана с параметрами Tc и ϭс компенсатора (параметры, характеризующие изменение световой волны при ее прохождении сквозь пластинку), и определялась из номограмм в координатах Tcс, построенных для фиксированных значений температур исследуемого диапазона (18 – 30°С). В известном способе измерения температурных зависимостей параметров пластины проводились на пропускание. Толщина пластины 470, 850, 2400 мкм. (Хасанов Т. Поляриметрия и эллипсометрия в исследовании поляризующих оптических систем: диссертация ... доктора физико-математических наук: 01.04.05 / Хасанов Тохир; [Место защиты: Ин-т автоматики и электрометрии СО РАН]. - Новосибирск, 2010. - 230 с. : ил.).

Известный способ предназначен только для пластин одноосных кристаллов, поскольку накладывает ряд ограничений на исследуемый объект. Среди этих ограничений – анизотропия пластины, необходимость отдельного ее закрепления перпендикулярно падающему лучу, а также очень точная юстировка всех элементов оптической системы. Кроме того, способ обеспечивает возможность измерения линейного коэффициента теплового расширения пленок толщиной более нескольких сот микрометров.

Таким образом, перед авторами стояла задача разработать способ определения линейного коэффициента теплового расширения тонких прозрачных пленок, толщиной менее одного мкм.

Поставленная задача решена в способе определения линейного коэффициента теплового расширения тонкой прозрачной пленки путем измерения эллипсометрических параметров Δ и ψ при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам, отличающийся тем, что на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, при этом до нанесения пленки определяют оптические параметры Δ и ψ отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную на столике эллипсометра, конструкция которой обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры Δ и ψ, отраженного от поверхности системы пленка-подложка светового луча.

В настоящее время из научно-технической и патентной литературы не известен способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки с использованием эллипсометрии, основанной на отражении светового луча от поверхности исследуемого объекта – системы подложка-пленка, в предлагаемых авторами условиях.

Предлагаемый способ заключается в измерении эллипсометрических параметров Δ и ψ при комнатной температуре и при температуре T K на образце, представляющем собой аморфную кварцевую подложку толщиной 2,0-2,5 см с нанесенной путем вакуумного напыления тонкой прозрачной пленкой толщиной 150-1000 нм. До нанесения тонкой прозрачной пленки определяют оптические постоянные подложки: n2 – показатель преломления, k2 – коэффициент поглощения при комнатной температуре и при температуре T K из системы уравнений:

(1)

(2)

где: n0 – показатель преломления внешней среды, n2 – показатель преломления подложки, k2 – коэффициент поглощения подложки, φ0 – угол падения, и – эллипсометрические параметры чистой подложки, без пленки.

Полученные оптические постоянные вводят в основное уравнение эллипсометрии:

(3)

где: r01p и r12p - коэффициенты отражения Френеля для р-компоненты вектора электрического поля, относящиеся соответственно к границе между средами ε0 и ε1 и ε1 и ε2; r01s и г12s - коэффициенты отражения Френеля для s-компоненты, относящиеся соответственно к тем же границам, что и r01p и r12p. Коэффициенты отражения Френеля записывают в виде:

(4)

(5)

(6)

(7)

где:

; (8)

, (9)

здесь: ε2, ε1 , ε0 - диэлектрические проницаемости подложки, плёнки и среды (воздух или вакуум) соответственно; n2, n1, n0 - показатели преломления; k2, k1, k0 - коэффициенты поглощения (для воздуха k0 = 0); ω - частота света, с - скорость света в вакууме; d - толщина поверхностной плёнки. На основании решения основного уравнения эллипсометрии (3) и экспериментально измеренных эллипсометрических параметров Δ и ψ определяют показатель преломления пленки n1 и ее толщину при комнатной температуре (d0) и температуре T K (d), соответственно.

После определения толщин пленки d0 и d рассчитывают линейный коэффициент теплового расширения тонкой прозрачной пленки по формуле:

(10)

где ΔT=T-T0;

Предлагаемый способ иллюстрируется следующим примером.

Пример 1

Способом вакуумного термического испарения на установке ВУП 5М наносят тонкую прозрачную пленку Al2O3 толщиной 205 нм на подложку из плавленого кварца толщиной 2 см. Предварительно до нанесения пленки определяют оптические параметры Δ и ψ отраженного от поверхности подложки светового луча при начальной и конечной температуре и оптические постоянные подложки. Затем на лазерном эллипсометре ЛЭФ-3М измеряют эллипсометрические параметры Δ и ψ образца, помещенного в водоохлаждаемую камеру, установленную на столике эллипсометра (Акашев Л.А., Кононенко В.И., Кочедыков В.А. “Оптические свойства жидкого лантана”, Расплавы, 1988, 2, вып. 4, с. 53-57) и снабженную нагревателем 1 с теплозащитными экранами 2 (фиг.1) при комнатной температуре (295K) и температуре T=895K. Нагреватель представляет собой кварцевый цилиндр, на который намотаны молибденовая проволока диаметром 0,6 мм. Камера изготовлена из нержавеющей стали, ее кожух 3 охлаждается водой. На дне вакуумной камеры находится кварцевая пластина 4. В центре камеры на кварцевом столике установлен исследуемый образец 5. В верхней части камеры установлены хромель-алюмелевая термопара 6. В молибденовых экранах имеются отверстия для прохождения падающего и отраженного от поверхности системы подложка-пленка светового луча. Камера снабжена двумя окнами из плавленого кварца 7, закрепленными через вакуумные уплотнения (фиг.1). Откачка камеры осуществляется двумя вакуумными насосами: форвакуумным с улавливанием масла в азотной ловушке и магниторазрядным насосом НОРД-100. После охлаждения образца снова измеряют эллипсометрические параметры при T=295K и T=895K. Эту процедуру повторяют несколько раз, до тех пор, пока Δ и ψ остаются постоянными при каждой температуре. Измеренные при угле падения луча света φ=60° эллипсометрические параметры равны Δ=356°54´ и ψ=7°08´ (T=295K), что соответствует, согласно решению основного уравнения (3), толщине тонкой прозрачной пленки d0=2046Å. При температуре T=895K эти параметры равны Δ=354°50´ и ψ=6°58´, что соответствует толщине пленки d=2054Å.

В программу для решения основного уравнения эллипсометрии по определению толщин d0 и d (3) вводили следующие параметры: λ=0,6328мкм; φ=60°; n0=1; n1=1.78; k1=0; n2=1.46; k2=0. Здесь n0, n1, n2 – показатели преломления внешней среды (воздух), пленки (оксид алюминия), подложки (плавленый кварц), k1, k2 – коэффициенты поглощения пленки и подложки.

Линейный коэффициент теплового расширения тонкой прозрачной пленки рассчитывали по формуле:

(10)

Температурной зависимостью показателя преломления плавленого кварца пренебрегали, т.к. в указанной области температур:

(11)

Полученная величина линейного коэффициента теплового расширения тонкой прозрачной пленки Al2O3 α=6.52·10-6 K-1 согласуется с линейным КТР для корунда α= 6,66·10-6 K-1; сапфира α= 5,6·10-6 K-1.

Таким образом, авторами предлагается способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм.

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки путем измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам, отличающийся тем, что на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, при этом до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча.



 

Похожие патенты:

Изобретение относится к области изготовления изделий электронной техники, заготовкой для которых является слиток полупроводникового материала, требующий калибровки - получение цилиндрической поверхности.

В травильной линии должно подвергаться травлению некоторое количество подвергаемых травлению полос, которые имеют начальные свойства материала. Для этого компьютер устанавливает некоторое количество последовательностей, которые содержат, соответственно, определенное количество полос, подвергаемых травлению.

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов.

Изобретение относится к электронной технике, в частности к микроэлектронике, и может быть использовано при изготовлении кристаллов интегральных схем (ИС) и дискретных полупроводниковых приборов.

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии сборки полупроводниковых приборов, и может быть использовано для гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) методом перевернутого монтажа.

Использование: для неразрушающего контроля параметров полупроводников, содержащих вырожденный электронный газ. Сущность изобретения заключается в том, что образец охлаждают, воздействуют на него изменяющимся постоянным магнитным полем с индукцией В и переменным магнитным полем, изменяющимся со звуковой частотой, имеющим амплитуду, во много раз меньшую индукции В, облучают образец СВЧ-излучением заданной частоты, выбирают частоту излучения меньше частоты столкновений носителей заряда с атомами полупроводника, регистрируют сигнал, пропорциональный второй производной мощности, проходящего через диафрагму и образец СВЧ-излучения в зависимости от индукции В, измеряют значение индукции магнитного поля, соответствующее максимуму сигнала, и определяют квантованное холловское сопротивление.

Изобретение относится к области микро- и наноэлектроники, а именно к определению физических параметров полупроводниковых приборов, в частности к определению температурной зависимости распределения потенциала в двухзатворных симметричных полностью обедненных полевых транзисторах со структурой «кремний на изоляторе» с гауссовым вертикальным профилем легирования рабочей области, и может быть использовано при моделировании и разработке интегральных схем в специализированных программах.

Изобретение относится к физике полупроводников. Его применение при определении параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике позволяет исследовать каскадно возбуждаемый тип ловушек в более широком классе полупроводниковых материалов, начиная с кристаллических и заканчивая органическими полупроводниками и нанокристаллами, и обеспечивает расширенные функциональные возможности за счет определения не только характеристик ловушек, но и энергетической плотности их состояний.
Изобретение относится к приборам и методам экспериментальной физики и предназначено для исследования дефектной структуры кристаллов. Способ имеет преимущество по сравнению с методом рентгенодифракционной топографии: нет необходимости разрушать исследуемый образец, можно осуществлять экспрессный контроль больших партий монокристаллов.

Изобретение относится к области оптико-электронного приборостроения и касается способа измерения пороговой разности температур инфракрасного матричного фотоприемного устройства.

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости.

Изобретение относится к способу классификации и/или сортировки посевного материала при помощи терагерцевой спектроскопии с разрешением по времени. Способ содержит следующие этапы: воздействие на зерно посевного материала терагерцевым импульсом; измерение сигнала, создаваемого терагерцевым импульсом после прохождения через зерно посевного материала и/или отражения от зерна посевного материала; определение амплитуды, временной задержки, фазы и/или спектра сигнала, обусловленных этим прохождением и/или отражением; и отнесение зерна посевного материала к определенному классу посевного материала.

Изобретение относится к аналитической химии и может быть использовано для определения содержания иона сульфата в почвах сельскохозяйственного назначения. Для этого получают водную вытяжку из почвы, отбирают аликвоту, переносят в другую емкость и добавляют в нее точное количество раствора известной концентрации хлорида бария.

Изобретение относится к измерительной технике и может быть использовано для неинвазивного анализа материала. Раскрыты способ и система для анализа материала (100).

Изобретение относится к солям соединения формулы I с щелочными металлами, замещающими атомы водорода в обеих сульфогруппах , где R означает N-оксисукцинимидильную группу Также предложены способ получения солей и их применение.

Изобретение относится к количественной люминесцентной микроскопии, применяемой в приборах, предназначенных для регистрации взаимодействий между биологическими молекулами, помеченными красителем, флуоресцирующим в видимой или инфракрасной области спектра, и молекулярными зондами, иммобилизованными в ячейках биологического микрочипа.

Изобретение относится к области колориметрии и касается способа определения показателя для характеризации качества настройки цветового тона лака по отношению к цветовому эталону.

Изобретение относится к способу для количественного определения и получения характеристик флюидов, насыщающих пористые геологические материалы, с использованием спектроскопии возбуждения лазерным пробоем (laser-induced breakdown spectroscopy, LIBS).

Изобретение относится к системе отслеживания с динамическим отношением «сигнал-шум». Технический результат заключается в повышении надежности системы отслеживания в окружении вне помещений и в присутствии других источников электромагнитного излучения.

Изобретение относится к взрывозащищенным газоанализаторам и может быть использовано для измерения концентрации газов, присутствующих в окружающей среде. Сущность: датчик включает корпус (1) со съемной крышкой (2).

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом (КД), с возможностью регулирования величины задаваемого эффекта в широком диапазоне значений на выбранной длине волны, сохраняющее ход светового луча строго по оптической оси в процессе калибровки.

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором производят измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам. При этом на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, кроме того до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и, отраженного от поверхности системы пленка-подложка светового луча. Технический результат - определение линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм. 1 ил.

Наверх