Магнитная система

Изобретение относится к области измерения механических параметров, например ускорений, и может быть использовано для демпфирования колебаний чувствительных элементов измерительных устройств. Магнитная система содержит по крайней мере один электропроводящий элемент, установленный с возможностью перемещения в рабочем зазоре магнитной системы, которая состоит из двух или более идентичных частей. Каждая из частей включает в себя постоянные магниты, соединенные между собой с образованием мозаичной структуры, в которой между двумя постоянными магнитами с одинаковым направлением намагниченности образован рабочий зазор, при этом части магнитной системы и магниты в каждой из них соединены между собой разноименными магнитными полюсами, кроме одной пары магнитов в каждой из частей, соединенных между собой одноименными магнитными полюсами. Технический результат – повышение коэффициента демпфирования. 2 ил.

 

Изобретение относится к области измерения механических параметров, например, ускорений, и может быть использовано для демпфирования колебаний чувствительных элементов измерительных устройств.

Известен магнитоиндукционный демпфер для измерительных устройств (см. патент РФ на полезную модель №92966, опубликован 10.04.2010), содержащий короткозамкнутый виток, установленный на свободном конце чувствительного элемента (ЧЭ) с возможностью взаимодействия с магнитным полем, создаваемым магнитной системой, в рабочем зазоре.

Вышеуказанное устройство является наиболее близким по технической сущности к заявляемому и поэтому выбрано в качестве прототипа.

Недостатком прототипа является то, что часть потока магнитов, зафиксированных на магнитопроводе, рассеивается с поверхностей магнитопровода, уменьшая тем самым величину рабочего потока, а значит, и значение индукции магнитного поля в рабочем зазоре и, следовательно, коэффициент демпфирования ЧЭ.

Решаемой задачей является создание магнитной системы с повышенной точностью измерения перемещения ЧЭ измерительного устройства.

Достигаемым техническим результатом является увеличение значения индукции в рабочем зазоре магнитной системы и, как следствие, увеличение коэффициента демпфирования.

Для достижения технического результата в магнитной системе, содержащей, по крайней мере, один электропроводящий элемент, установленный с возможностью перемещения в рабочем зазоре магнитной системы, новым является то, что магнитная система состоит из двух или более идентичных частей, каждая из которых включает в себя постоянные магниты, соединенные между собой с образованием мозаичной структуры, в которой между двумя постоянными магнитами с одинаковым направлением намагниченности образован рабочий зазор, при этом части магнитной системы и магниты в каждой из них соединены между собой разноименными магнитными полюсами, кроме одной пары магнитов в каждой из частей, соединенных между собой одноименными магнитными полюсами.

Образование мозаичной структуры в магнитной системе и расположение магнитов в ней позволяют организовать рабочие зазоры с расположением в них электропроводящих элементов, создавая максимально возможную активную длину прохождения рабочего потока в направлении своей намагниченности с максимально возможной намагничивающей силой и минимальным рассеянием (ввиду отсутствия пассивных элементов - магнитопроводов), обеспечивая в рабочем зазоре максимум индукции, что позволяет увеличить коэффициент демпфирования.

На фиг. 1 показан вид сбоку магнитной системы, состоящей из двух частей.

На фиг. 2 показан вид сбоку одной из составных частей магнитной системы.

Магнитная система содержит электропроводящие элементы 3 (Фиг. 1), установленные с возможностью перемещения в рабочих зазорах магнитной системы. Магнитная система состоит из двух частей 1 и 2 (Фиг. 1), каждая из которых включает в себя постоянные магниты 4, 5, 6, 7, 8 (Фиг. 3) соединенные между собой с образованием мозаичной структуры, в которой между двумя постоянными магнитами 5 и 8 с одинаковым направлением намагниченности образован рабочий зазор. Части 1 и 2 (Фиг. 1) магнитной системы и магниты 4, 5, 6, 7 (Фиг. 2) соединены между собой разноименными магнитными полюсами. Пара магнитов 7, 8 (Фиг. 2) в каждой из частей 1, 2 (Фиг. 1) соединены между собой одноименными магнитными полюсами.

Устройство работает следующим образом.

При действии измеряемого параметра (ускорения) происходит перемещение ЧЭ и связанного с ним электропроводящего элемента 3.

Магнитная система является магнитоиндукционным демпфером, принцип работы которого основан на законе электромагнитной индукции: при движении проводника (электропроводящего элемента 3) сопротивлением г в поле с индукцией В в нем наводится эквивалентная э.д.с. По закону сохранения энергии электрическая мощность вихревых токов в электропроводящем элементе 3 переходит в механическую мощность торможения ЧЭ измерительного устройства. Величина коэффициента демпфирования зависит от значения индукции в рабочем зазоре, которое определяется конструкцией магнитной системы и энергетическими свойствами постоянных магнитов в ней.

Для подтверждения работоспособности изобретения был проведен расчет магнитной системы, который показал, что среднеинтегральное значение нормальной составляющей магнитной индукции к поверхности электропроводящего элемента в центральной части рабочего зазора составило 1,508 Тл, при остаточной индукции материала магнита Br=1,378 Тл и коэрцитивной силе по индукции Hcb=890394 А/м. На предприятии был изготовлен макет магнитной системы. Измерения магнитной индукции в рабочих зазорах показали, что значения индукции магнитного поля равны 1,49 Тл и 1,5 Тл.

Магнитная система, содержащая по крайней мере один электропроводящий элемент, установленный с возможностью перемещения в рабочем зазоре магнитной системы, отличающаяся тем, что магнитная система состоит из двух или более идентичных частей, каждая из которых включает в себя постоянные магниты, соединенные между собой с образованием мозаичной структуры, в которой между двумя постоянными магнитами с одинаковым направлением намагниченности образован рабочий зазор, при этом части магнитной системы и магниты в каждой из них соединены между собой разноименными магнитными полюсами, кроме одной пары магнитов в каждой из частей, соединенных между собой одноименными магнитными полюсами.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям линейного ускорения, а также к области космической техники. Спутниковый акселерометр маятникового типа содержит корпус, маятник с инерционной массой, торсионный подвес, датчик перемещений, компенсационную систему обратной связи, при этом в конструкции имеются два ограничителя движения маятника, жестко скрепленные с корпусом прибора, при этом один расположен в центре масс маятника, а второй расположен вдоль оси торсионного подвеса маятника.

Изобретения относятся к измерительной технике и могут быть использованы при определении характеристик движения объектов, таких как скорость, ускорение, вибрации и т.д.

Изобретение относится к измерительной технике, представляет собой преобразователь пути и линейной скорости движения объекта в код и может использоваться при контроле положения и скорости при малых (0,1 мкм÷10 мкм) и больших (до 10 см) перемещениях.

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. .

Изобретение относится к области измерительной техники. .

Изобретение относится к области измерения параметров вращения вала и может быть использовано в системах автоматического управления. .

Изобретение относится к области измерения параметров вращения и может быть использовано в системах автоматического управления. .

Изобретение относится к области измерения параметров вращения вала. .

Изобретение относится к информационно-измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям линейного ускорения, а также к области космической техники. Спутниковый акселерометр маятникового типа содержит корпус, маятник с инерционной массой, торсионный подвес, датчик перемещений, компенсационную систему обратной связи, при этом в конструкции имеются два ограничителя движения маятника, жестко скрепленные с корпусом прибора, при этом один расположен в центре масс маятника, а второй расположен вдоль оси торсионного подвеса маятника.

Изобретения относятся к измерительной технике и могут быть использованы при определении характеристик движения объектов, таких как скорость, ускорение, вибрации и т.д.

Изобретение относится к метрологии, в частности к датчикам механических ускорений. Датчик представляет собой резонатор, выполненный в виде сдвоенного камертона, и содержит основание, чувствительный элемент с маятниковым подвесом в виде двух стержней, упругие шарниры, размещенные на одной пластине монокристалла кварца Z-среза.

Изобретение относится к области измерения механических параметров. Резонатор силочувствительный с изгибной формой колебаний выполнен в виде двух идентичных параллельно расположенных между собой стержней, одни концы которых жестко соединены между собой и с первым элементом приложения измеряемой силы, а другие концы соединены через первые упругие шарниры со вторым элементом приложения измеряемой силы, при этом вторые упругие шарниры выполнены в средней части каждого стержня с образованием клиновидных участков с большей изгибной жесткостью, узкие части которых обращены в сторону первых и вторых упругих шарниров соответственно.

Предлагаемое изобретение относится к области приборостроения и предназначено для автономного измерения ускорения летательных аппаратов. Струнный акселерометр содержит на своем основании чувствительные элементы, включающие струну, закрепленную одним концом на корпусе, другим на грузе, размещенном на упругом пластинчатом подвесе, и магнитоэлектрические приводы для поддержания автоколебаний струн.

Изобретение относится к измерительной технике, а точнее к струнным акселерометрам для автономного определения параметров движения летательных аппаратов и может быть использовано при производстве струнных акселерометров.

Изобретение относится к измерительной технике, представляет собой преобразователь пути и линейной скорости движения объекта в код и может использоваться при контроле положения и скорости при малых (0,1 мкм÷10 мкм) и больших (до 10 см) перемещениях.

Изобретение относится к измерительной технике и может быть использовано для измерений ускорения и других параметров. .

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. .

Изобретение относится к измерительной технике. .

Изобретение относится к области измерения механических параметров, например ускорений, и может быть использовано для демпфирования колебаний чувствительных элементов измерительных устройств. Магнитная система содержит по крайней мере один электропроводящий элемент, установленный с возможностью перемещения в рабочем зазоре магнитной системы, которая состоит из двух или более идентичных частей. Каждая из частей включает в себя постоянные магниты, соединенные между собой с образованием мозаичной структуры, в которой между двумя постоянными магнитами с одинаковым направлением намагниченности образован рабочий зазор, при этом части магнитной системы и магниты в каждой из них соединены между собой разноименными магнитными полюсами, кроме одной пары магнитов в каждой из частей, соединенных между собой одноименными магнитными полюсами. Технический результат – повышение коэффициента демпфирования. 2 ил.

Наверх