Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в гидроакустической антенне. Достигаемый технический результат - повышение точности обработки информации. Данный технический результат достигается за счет исключения из получаемых результатов составляющей погрешности, обусловленной разной скоростью изменения параметров гидроакустических приемников и акселерометров антенны во времени. Кроме того обеспечивается расширение диапазона использования датчиков гидроакустической антенны за счет создания датчиками гидроакустической волны в противофазе с гидроакустической волной от вибрации носителя. В результате интенсивность суммарной волны уменьшается. Уменьшается вероятность обнаружения носителя антенной другого носителя. Поставленная задача решается тем, что в известном способе обработки информации в гидроакустической антенне в каждую из «n» ячеек антенны, расположенной на корпусе носителя, устанавливают гидроакустический приемник и акселерометр, измеряющий параметры вибрации корпуса носителя, вычитают выходной сигнал акселерометра из выходного сигнала гидроакустического приемника, согласно изобретению в каждой ячейке антенны располагают три одинаковых пьезоэлектрических датчика, первый пьезоэлектрический датчик устанавливают в водной среде и используют в качестве гидроакустического приемника, второй пьезоэлектрический датчик изолируют от водной среды и используют в качестве акселерометра, третий пьезоэлектрический датчик устанавливают в водной среде и подают на него усиленный сигнал второго пьезоэлектрического датчика в инверсном виде, при этом создают гидроакустическую волну, компенсирующую гидроакустическую волну, образованную вибрацией корпуса носителя.

 

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников.

Известен способ обработки информации в гидроакустической антенне [заявка США №20070194982]. Способ заключается в установке на корпусе антенны гидроакустического приемника и акселерометра; измерении сигнала на выходе приемника и на выходе акселерометра; определении соотношения передаточных функций по вибрационной помехе выходного сигнала гидроакустического приемника и выходного сигнала акселерометра; компенсации по выходному сигналу акселерометра и по известной передаточной функции вибрационной помехи на гидроакустическом приемнике путем вычитания из сигнала на выходе приемника, увеличенного в соотношении раз, сигнала акселерометра.

Недостатком способа является необходимость знания вышеуказанной передаточной функции, определение которой довольно затруднительно и которая может меняться во времени в процессе эксплуатации антенны под воздействием на нее внешней среды. Такой подход требует периодической калибровки используемых устройств в условиях минимизации шумовых гидроакустических воздействий на приемник антенны.

Известен также способ обработки информации в гидроакустической антенне [патент РФ №2492507], который принимаем за прототип. Согласно данному способу в каждую из «n» ячеек антенны, расположенной на корпусе носителя, устанавливают гидроакустический приемник и акселерометр. Определяют чувствительность антенны к вибрации корпуса носителя. Для этого измеряют сигнал на выходе гидроакустического приемника и сигнал на выходе акселерометра при отсутствии гидроакустических волн, т.е. в условиях отражающих воздействие на приемник и акселерометр только вибрации корпуса носителя. Определяют параметры передаточных функций приемника и акселерометра по вибрации. Определяют отношение коэффициента передаточной функции приемника к коэффициенту передаточной функции акселерометра, затем в процессе работы измеряют сигналы с выхода приемника и акселерометра, подвергают их преобразованию Фурье. Определяют спектральный состав измеряемых сигналов в рабочей области частот. Анализируют спектры и вычитают из спектра приемника составляющие спектра акселерометра, обусловленные вибрацией корпуса носителя.

Недостатками способа являются:

- Низкая точность обработки принимаемого гидроакустического сигнала, обусловленная наличием в результатах составляющей погрешности от изменения во времени поступающих на обработку сигналов от используемых в антенне устройств - гидроакустического приемника и акселерометра. Причиной изменения является разная скорость изменения параметров гидроакустического приемника и акселерометра, функционирующих на разных физических принципах.

- Ограниченный диапазон использования возможностей гидроакустической антенны.

Решаемая техническая проблема - совершенствование способа обработки информации в гидроакустической антенне.

Достигаемый технический результат - повышение точности обработки информации. Данный технический результат достигается за счет исключения из получаемых результатов составляющей погрешности, обусловленной разной скоростью изменения параметров гидроакустических приемников и акселерометров антенны во времени.

Кроме того обеспечивается расширение диапазона использования датчиков гидроакустической антенны путем создания датчиками гидроакустической волны в противофазе с гидроакустической волной создаваемой вибрацией корпуса носителя, которая является источником информации при приеме ее гидроакустической антенной другого носителя. В результате интенсивность суммарной гидроакустической волны излучаемой носителем уменьшается. Уменьшается вероятность его обнаружения другим носителем.

Поставленная задача решается тем, что в известном способе обработки информации в гидроакустической антенне согласно которому, в каждую из «n» ячеек антенны, расположенной на корпусе носителя, устанавливают гидроакустический приемник и акселерометр, измеряющий параметры вибрации корпуса носителя, вычитают выходной сигнал акселерометра из выходного сигнала гидроакустического приемника, при этом в каждой ячейке антенны располагают три одинаковых пьезоэлектрических датчика, первый пьезоэлектрический датчик устанавливают в водной среде и используют в качестве гидроакустического приемника, второй пьезоэлектрический датчик изолируют от водной среды и используют в качестве акселерометра, третий пьезоэлектрический датчик устанавливают в водной среде и подают на него усиленный сигнал второго пьезоэлектрического датчика в инверсном виде, при этом создают гидроакустическую волну, компенсирующую гидроакустическую волну, образованную вибрацией корпуса носителя.

Способ реализуется при выполнении следующих технологических операций:

1. На корпусе носителя устанавливают гидроакустическую антенну содержащую «n» ячеек.

2. В каждой ячейке гидроакустической антенны располагают три одинаковых пьезоэлектрических датчика (далее - датчик) с равными между собой параметрами передаточных функций по вибрации корпуса носителя.

3. Первый датчик устанавливают в ячейке в контакте с водной средой и используют как приемник гидроакустических сигналов (далее - приемник). На данный датчик оказывает воздействие гидроакустическая волна и вибрация корпуса носителя.

4. Второй датчик устанавливают изолированно от водной среды и используют в качестве акселерометра, измеряющего вибрацию корпуса носителя. На данный датчик (далее - акселерометр) оказывает воздействие только вибрация корпуса носителя. При этом отношение коэффициента передаточной функции приемника к коэффициенту передаточной функции акселерометра при воздействии вибрации корпуса носителя постоянно и равно единице.

5. Измеряют сигнал на выходе приемника и акселерометра. Производят вычитание сигнала акселерометра из сигнала приемника. На выходе приемника имеют сигнал с устраненной (уменьшенной) вибрационной помехой. Со временем параметры приемника и акселерометра изменяются, однако отношение коэффициентов передаточных функций, характеризующих чувствительность антенны, остается постоянным и равным единице. Это обусловлено одинаковой скоростью изменения их параметров во времени, что определяется использованием в гидроакустической антенне датчиков, работающих на одном физическом принципе и имеющих одинаковую конструкцию.

6. Вибрация корпуса носителя создает гидроакустическую волну, которая является источником информации при приеме ее гидроакустической антенной другого носителя. Для уменьшения ее интенсивности третий датчик в ячейке устанавливают в контакте с водной средой и подают на него с акселерометра усиленный сигнал в инверсном виде. При этом пластины датчика будут совершать механические колебания в противофазе с колебаниями корпуса от вибрации. Колебания пластин создают в водной среде гидроакустическую волну в противофазе с гидроакустической волной, образованной вибрацией корпуса носителя. При сложении волн происходит их взаимная компенсация, интенсивность суммарной гидроакустической волны, исходящей от носителя, уменьшается.

Таким образом, достигается заявляемый технический результат.

На предприятии предлагаемый способ апробирован на макете ячейки гидроакустической антенны. При проведении испытаний получены положительные результаты.

Способ обработки информации в гидроакустической антенне, согласно которому в каждую из «n» ячеек антенны, расположенной на корпусе носителя, устанавливают гидроакустический приемник и акселерометр, измеряющий параметры вибрации корпуса носителя, вычитают выходной сигнал акселерометра из выходного сигнала гидроакустического приемника, отличающийся тем, что в каждой ячейке антенны располагают три одинаковых пьезоэлектрических датчика, первый пьезоэлектрический датчик устанавливают в водной среде и используют в качестве гидроакустического приемника, второй пьезоэлектрический датчик изолируют от водной среды и используют в качестве акселерометра, третий пьезоэлектрический датчик устанавливают в водной среде и подают на него усиленный сигнал со второго пьезоэлектрического датчика в инверсном виде, при этом создают гидроакустическую волну, компенсирующую гидроакустическую волну, образованную вибрацией корпуса носителя.



 

Похожие патенты:

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению.

Изобретение относится к гидроакустике, а точнее к навигационным устройствам, конкретно к лагам, и может быть использовано для повышения точности измерения скорости движения надводных кораблей, подводных лодок и других судов водного транспорта на малых и больших глубинах.

Изобретение относится к области гидроакустики, а именно к способам обработки гидроакустических сигналов в условиях реального канала распространения, и может применяться в гидроакустических системах связи, управления и позиционирования, где применяются алгоритмы сжатия и восстановления регистрируемых сигналов.

Изобретение относится к эхокардиографии, а именно к отслеживанию пространственного предела визуального блокирования. Интерактивный инструмент визуального наведения для прибора содержит устройство отображения, зонд формирования изображения, модуль воспроизведения проекции, выполненный с возможностью представления на устройстве отображения изображения, причем инструмент выполнен с возможностью навигации пользователя по отношению к блокированию поля обзора и содержит блокировочный модуль, выполненный с возможностью обнаружения и пространственного ограничения упомянутого блокирования; и процессор отслеживания разграничения, выполненный с возможностью объединения знака, визуально представляющего указание границ, с изображением для совместной визуализации на устройстве отображения.

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхо-сигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и способ обнаружения объекта и измерения параметров содержит излучение зондирующего сложного сигнала длительностью Т и полосой F в момент tиз, формирования М-опорных сигналов, центральная частота которых сдвинута по частоте относительно излученного сигнала на величину К, прием эхо-сигнала, определение М корреляционных функций между эхо-сигналом и каждым из М-опорных сигналов, измерение амплитуды корреляционных функций, выбор корреляционной функции с максимальной амплитудой Амакс, определение временного положения максимума корреляционной функции tмакс для определения дистанции по формуле Д=0,5С(tмакс-tиз), где С - скорость звука, определение номера опорного сигнала Mtмакс для определения скорости Vtмакс, отображение результата на индикаторе, величина сдвига по частоте К не превышает 0,5/Т, определяют крайний номер опорного канала симметричного Мtмакс относительно частоты излучения и в этом канале определяют максимальное значение выброса корреляционной функции Апор, и, если Амакс>2Апор, то определяют амплитуды всех выбросов корреляционной функции канала с Амакс, величина которых превысила 0,5Амакс, определяют временное положение каждого выброса ti, определяют разность между крайними выбросами и протяженность эхо-сигнала L=0,5C(t1-tn), где t1 - первый выброс корреляционной функции, превысивший порог, tn - последний выброс корреляционной функции, превысивший порог, определяют число выбросов, превысивших порог N, и определяют класс цели по скорости, протяженности и числу выбросов.

Устройство (308) сконфигурировано для исследования пульсирующего потока для получения на основе исследуемого потока спектральных характеристик и для определения на основе полученных характеристик, какой один или более сердечных циклов следует выбрать в качестве репрезентативных для исследуемого потока.

Группа изобретений относится к медицинской технике, а именно к визуальному руководству пользователю по регулировке местоположения и ориентации формирующего изображения зонда.

Изобретение относится к способу управления подводным аппаратом. С надводного корабля выпускают подводный аппарат (ПА) и буй-ретранслятор, управляют наведением ПА на цель по линии связи надводного корабля с ПА через буй-ретранслятор, контролируют местонахождение ПА, контролируют местонахождение цели, контролируют местонахождение буя-ретранслятора, при сближении ПА с целью системы подают команду и переводят ПА в режим поиска цели.

Настоящее изобретение относится к области гидроакустики и может быть использовано для обнаружения и измерения толщины льда на водной поверхности, а также для регистрации профиля нижней кромки льда с подводного объекта.

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации систем при обнаружении и классификации объектов.
Наверх