Центростремительная турбина

Изобретение относится к энергетическому, транспортному и авиационному двигателестроению и может быть использовано в технических объектах, где в качестве источника энергии целесообразно использовать высокотемпературную высокооборотную центростремительную турбину малой мощности с небольшим объемным расходом рабочего тела. Предлагается центростремительная турбина, содержащая корпус, радиально-осевое рабочее колесо турбины, снабженное лопаточным аппаратом. На внутренней поверхности корпуса, где касательная линия к этой поверхности в меридиональном сечении образует с осью турбины угол γ, где 25°≤γ≤30°, выполнен кольцевой выступ, перекрывающий зазор между корпусом и лопатками рабочего колеса, кроме того, кольцевой выступ выполнен с плоской поверхностью, расположенной по нормали к набегающему потоку рабочего тела, при этом лопатки рабочего колеса в меридиональном сечении повторяют форму внутренней поверхности корпуса до выступа, при этом за выступом по потоку рабочего тела лопатки выполнены со срезом по внешней кромке, причем глубина среза равна величине выступа. Технический результат предлагаемого изобретения заключается в снижении утечек рабочего тела через зазор между лопатками рабочего колеса и корпусом и, следовательно, в повышении КПД турбины. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к энергетическому, транспортному и авиационному двигателестроению и может быть использовано в технических объектах, где в качестве источника энергии целесообразно использовать высокотемпературную высокооборотную центростремительную турбину малой мощности с небольшим объемным расходом рабочего тела.

Известна конструкция, предназначенная для уменьшения утечек рабочего тела [1], включающая в себя рабочее колесо центростремительной турбины с покрывным диском. Между корпусом турбины и покрывным диском для уменьшения утечек установлено бесконтактное лабиринтное уплотнение, представляющее собой совокупность кольцевых выступов (уплотнительных гребней), расположенных на роторе и статоре таким образом, что выступы перекрывают друг друга и образуют лабиринт. За счет гидравлического сопротивления, создаваемого лабиринтом, расход рабочего тела через зазоры заметно снижается.

Данная конструкция имеет ряд существенных ограничений для ее использования в высокотемпературных высокооборотных радиально-осевых турбинах. Наличие покрывного диска существенно повышает напряжения в материале рабочего колеса, вызванные центробежными силами и неравномерным тепловым расширением.

Наиболее близкой по технической сущности к предлагаемому изобретению является конструкция центробежной турбины, предназначенной для минимизации зазоров между корпусом и лопаточным аппаратом рабочего колеса [2], принятая за прототип. Конструкция включает в себя радиально-осевое рабочее колесо и корпус (статор), покрытый с внутренней стороны специальным мягким материалом, обладающим такими механическими свойствами, что при соприкосновении с лопатками колеса происходит его быстрый износ без повреждения лопаточного аппарата колеса. Таким образом, в процессе работы турбины устанавливается минимально возможный зазор между ротором и статором в проточной части.

Однако использование данной конструкции имеет ряд существенных ограничений. Она может быть использована без ущерба для надежности только в том случае, если предполагаемая толщина слоя мягкого материала, истираемого в процессе приработки ротора и статора, не превышает 0,1-0,3 миллиметра, что характерно для турбин с жестким валом (работающим с частотой вращения ниже первой критической) и умеренных тепловых расширений рабочего колеса.

Для высокооборотной турбины изготовить вал жестким часто не представляется возможным. При прохождении критической частоты амплитуда прецессии может достигать значительной величины, что приведет к чрезмерной нагрузке на лопаточный аппарат рабочего колеса при выработке большой толщины (более 0,5 мм) истираемого слоя на корпусе и аварийной ситуации.

Зазор между лопаточным аппаратом рабочего колеса и корпусом по условию надежности (во избежание задевания ротора о статор на всех рабочих и переходных режимах) должен быть не менее 1-1,5 мм.

Данная проблема особенно актуальна для высокооборотных турбин небольшой мощности, где в качестве опор используют магнитные подшипники или подшипники с газовой смазкой, которые обладают заметно большей податливостью по сравнению с шариковыми подшипниками или подшипниками жидкого трения.

Ротор турбины на таких опорах при прохождении резонансных частот в процессе его разгона и останова может достигать значительных амплитуд прецессии, что может привести к задеванию ротора о статор и возникновению аварийной ситуации.

Для высокотемпературных центростремительных турбин значительные тепловые деформации рабочего колеса турбины не позволяют уменьшить зазоры в проточной части до приемлемой величины. Использование покрывного диска также неприемлемо вследствие дополнительных напряжений из-за центробежных сил и неравномерности нагрева и расширения материала покрывного диска и лопаток.

В целях повышения эксплуатационной надежности целесообразно увеличить зазор между рабочим колесом и статором до значений, гарантирующих безаварийную работу турбины.

Известно, что наибольшее влияние на КПД центростремительной турбины оказывают потери энергии с выходной скоростью. Минимального значения они достигают при осевом направлении потока (при отсутствии закрутки). Увеличение зазоров из соображения надежности приводит к столь существенному увеличению потерь с утечками рабочего тела, что в общей сумме потерь они становятся определяющими.

Технический результат предлагаемого изобретения заключается в снижении утечек рабочего тела через зазор между лопатками рабочего колеса и корпусом и, следовательно, к повышению КПД турбины.

Для обеспечения технического результата предлагается центростремительная турбина, состоящая из корпуса и рабочего колеса с лопаточным аппаратом. На внутренней поверхности корпуса в месте смены направления потока рабочего тела с радиального на осевое выполнен кольцевой выступ. Лопатки рабочего колеса в меридиональном сечении повторяют форму внутренней поверхности корпуса, а зазор между корпусом и лопатками рабочего колеса выполнен постоянным. Касательная линия к внутренней поверхности корпуса, в месте смены направления потока рабочего тела в меридиональном сечении может образовывать с осью турбины угол в пределах 20-30 градусов. Кольцевой выступ может быть выполнен с плоской поверхностью, расположенной по нормали к набегающему потоку рабочего тела.

Турбина конструктивно состоит из двух основных элементов: ротора и статора (корпуса), между которыми в процессе работы не должно быть контакта.

Так как в проточном тракте обязательно имеют место зазоры между ротором и статором (корпусом), то в процессе расширения рабочего тела возникают протечки в эти зазоры в обход основного потока, совершающего полезную работу.

В целях увеличения экономичности турбины целесообразно минимизировать указанные зазоры, однако это не всегда представляется возможным, так как из-за требований к эксплуатационной надежности (для исключения задевания ротора о корпус) на всех режимах работы приходится увеличивать зазор между лопатками рабочего колеса ротора и корпусом. Увеличенный зазор, в свою очередь, приводит к дополнительным потерям и снижению КПД турбины.

Структура потока рабочего тела в межлопаточном пространстве рабочего колеса центростремительной турбины имеет следующую особенность: часть потока, обладающая наибольшей скоростью, сосредоточена у периферии лопаточного аппарата, т.е. в районе зазора между лопатками и корпусом.

На выходе из рабочего колеса ротора поток меняет направление от центростремительного к осевому и происходит резкое отклонение потока в сторону противоположную вращению колеса за счет формы рабочих лопаток. При этом часть потока, обладающая наибольшей кинетической энергией, устремляется в зазор между корпусом и выходными кромками рабочего колеса ротора. Очевидно, что сокращение утечек рабочего тела через зазор приведет к увеличению КПД турбины.

Эффект повышения экономичности достигается за счет уменьшения утечек рабочего тела через зазор между лопаточным аппаратом рабочего колеса и статором вследствие того, что кольцевой выступ препятствует движению газа в зазоре и вытесняет его в межлопаточное пространство, совершает полезную работу.

В зоне радиального движения рабочего тела утечкам препятствует сила Кориолиса, которая направлена против движения струек перетекающего газа и смещает их вдоль кромки лопатки вниз по потоку. Часть потока, попадающая в осевой зазор, не участвует в преобразовании энергии в рабочем колесе и вызывают потери с утечкой через зазор. Однако, на радиальном участке проточной части потери, вызванные утечками, не столь велики (из-за силы Кориолиса).

Выполнение угла γ в пределах 20-300 обеспечивает смену направления потока газа в межлопаточных каналах рабочего колеса в месте расположения выступа с радиального на осевое. Если угол γ>30°, то поток рабочего тела в месте расположения выступа будет иметь преимущественно радиальное направление, и влияние вытеснения утечек из зазора в межлопаточное пространство на КПД ступени будет незначительным; если угол γ<20°, то теряется значительная часть потока газа в зазоре, которая могла быть вытесненной выступом в межлопаточное пространство и совершить полезную работу.

После изменения направления потока на осевое газ, следуя форме межлопаточного канала, отклоняется в окружном направлении в сторону противоположную вращению. При этом поток газа в зазоре, не совершая полезной работы, устремляется к выходу из проточной части колеса.

Предлагаемое изобретение поясняется чертежом, на котором показано меридиональное сечение центростремительной турбины. На фигуре изображены: 1 - корпус, 2 - радиально - осевое рабочее колесо, 3 - ротор, 4 - кольцевой выступ, 5 - выходная кромка лопаточного аппарата радиально - осевого рабочего колеса, 6 - сопловой аппарат.

Центростремительная турбина работает следующим образом.

Рабочее тело (газ) подается в полость (на фигуре не показана) перед сопловым аппаратом 6, представляющим собой совокупность каналов, образованных сопловыми лопатками. Рабочее тело натекает на сопловые лопатки 6 в радиальном направлении от периферии к центру.

В межлопаточных каналах соплового аппарата 6 поток рабочего тела расширятся, ускоряется и отклоняется в тангенциальном направлении в сторону вращения радиально - осевого рабочего колеса 2. После чего поток газа попадает в межлопаточное пространство радиально - осевого рабочего колеса 2 и в зазор между корпусом и лопаточным аппаратом рабочего колеса.

Кольцевой выступ, выполненный на корпусе 1 в месте смены направления потока рабочего тела с радиального на осевое, создает гидравлическое сопротивление потоку рабочего тела, попавшего в зазор, и способствует отклонению его в межлопаточное пространство, где он вместе с основным потоком рабочего тела совершает полезную работу.

Расчеты (численные эксперименты) с использованием программного комплекса ANSYS показали, что наличие кольцевого выступа, перекрывающего зазор между корпусом и лопаточным аппаратом рабочего колеса, позволяет уменьшить суммарные потери (по выходной скорости и утечками через зазор) и повысить КПД турбины примерно на 2,5-3%.

Источники информации

1. Авторское свидетельство СССР №1574967 от 30.06.90 г.

2. Патент США №5,975,845 от 02.11.1999 г.

1. Центростремительная турбина, состоящая из корпуса и рабочего колеса с лопаточным аппаратом, отличающаяся тем, что на внутренней поверхности корпуса в месте смены направления потока рабочего тела с радиального на осевое выполнен кольцевой выступ, при этом лопатки рабочего колеса в меридиональном сечении повторяют форму внутренней поверхности корпуса, а зазор между корпусом и лопатками рабочего колеса выполнен постоянным.

2. Центростремительная турбина по п. 1, отличающаяся тем, что касательная линия к внутренней поверхности корпуса в месте смены направления потока рабочего тела в меридиональном сечении образует с осью турбины угол в пределах 20-30 градусов.

3. Центростремительная турбина по п. 1, отличающаяся тем, что кольцевой выступ выполнен с плоской поверхностью, расположенной по нормали к набегающему потоку рабочего тела.



 

Похожие патенты:

Компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержит металлическую подложку, крепящий слой на поверхности подложки, теплозащитное покрытие, структуру выступающих элементов и структуру элементов в виде канавок.

Лопатка ротора газотурбинного двигателя включает на своей концевой части бандажную полку, содержащую площадку с первым бортиком со стороны корытца и вторым бортиком со стороны спинки и уплотнительный гребешок.

Изобретение относится к газотурбинным двигателям и, в частности к штифтовому уплотнению лопаток турбин. Дисковый узел газотурбинного двигателя включает в себя диск турбины, лопатки турбины и штифтовые уплотнения.

Турбина // 2645892
Турбина реактивного двигателя содержит корпус турбины, лопатки турбины, кожух. Корпус турбины имеет цилиндрическую форму.

Изобретение относится к области турбостроения и может быть использовано в необандаженных ступенях паровых и газовых турбин. Периферийное уплотнение необандаженных турбинных ступеней, содержащее на внешнем обводе винтовые канавки в области радиального зазора необандаженной турбинной ступени.

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения.

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения.

Охлаждающий бандажный узел турбины для газотурбинной установки содержит внешний и внутренний бандажные элементы. Внешний бандажный элемент расположен внутри турбинной секции газотурбинной установки вблизи корпуса турбинной секции и имеет, по меньшей мере, один воздуховод для введения в этот элемент охлаждающей текучей среды.

Изобретение относится к области турбостроения, в частности к реверсивным силовым судовым турбинам, содержащим турбину заднего хода. Ступень турбины заднего хода содержит сопловой аппарат, рабочие лопатки, подвижный П-образный экран, установленный над рабочими лопатками, в дне которого выполнены окна.

Группа изобретений относится к уплотнению, уплотнению турбинного двигателя и способу изготовления уплотнения. Материал основы уплотнения имеет первый участок с первой степенью истираемости и второй участок со второй степенью истираемости, причем первый участок имеет меньшую степень истираемости, чем второй участок, и включает упрочняющее покрытие.

Газотурбинная установка содержит ступень сжатия воздуха, имеющую по меньшей мере одно рабочее колесо компрессора, входной воздушный трубопровод, связанный с упомянутой ступенью сжатия, первое уплотнительное устройство, расположенное между передним участком рабочего колеса компрессора и входным воздушным трубопроводом и содержащее по меньшей мере одну уплотнительную прокладку, канал транспортировки воздуха, сжимаемого рабочим колесом.

Изобретение относится к теплоэнергетике, к устройствам уплотнения паровых турбин. Предлагается более простой аналог сотовых уплотнений.

Изобретение относится к теплоэнергетике, а именно к устройствам уплотнения паровых турбин. Предлагается более простой аналог сотовых уплотнений.

Изобретение относится к газотурбинным двигателям со свободной силовой турбиной авиационного и наземного применения. Силовая свободная турбина включает в себя роликоподшипник, внутреннее кольцо которого закреплено в осевом положении гайкой, а также воздушное лабиринтное уплотнение с лабиринтным кольцом и статорным фланцем лабиринта.

Изобретение относится к газотурбинным двигателям с силовой свободной турбиной. Силовая турбина содержит статор с размещенным в нем роликоподшипником и установленный в роликоподшипнике вал ротора турбины с дисками турбины.

Барабан ротора осевой турбомашины содержит стенку с профилем вращения вокруг оси вращения ротора, образующую пустотелый корпус и содержащую на своей наружной поверхности две кольцевые фиксирующие поверхности для ряда лопаток.

Изобретение относится к узлу уплотнения для использования в газотурбинном двигателе. Узел уплотнения между полостью диска и путепроводом горячего газа секции турбины включает в себя неподвижный узел 12 направляющих лопаток 14 и вращающийся узел 18 рабочих лопаток 20, расположенный ниже по потоку относительно узла 12.

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и нагнетающие элементы (130), распределенные вокруг узла с ответвлениями, выполненного с возможностью придавать в наиболее узком зазоре пути охлаждающей текучей среды движение потоку охлаждающей текучей среды, текущей через него.

Крыльчатка для турбомашины, такой как турбореактивный двигатель или турбовинтовой двигатель самолета, содержит диск (50) ротора, включающий в себя на своей внешней периферии ребра (14) жесткости, ограничивающие гнезда (18) осевого монтажа и радиального удерживания замков лопаток.

Настоящее изобретение относится к уплотнительной втулке (1) для паровой турбины (40). Паровая турбина (40) содержит по меньшей мере ротор (41) турбины и корпус (43) турбины, при этом уплотнительная втулка (1) размещена между валом (42) ротора (41) и корпусом (43) и содержит по меньшей мере два сквозных канала (2, 3), которые проходят от части (4) уплотнительной втулки (1), обращенной к ротору, к части (5) уплотнительной втулки (1), обращенной к корпусу турбины, и выполнены так, что их расположение может соответствовать подобным сквозным отверстиям (44, 45) в корпусе (43) для обеспечения отвода (20) пара турбины (40) через каналы (2, 3) уплотнительной втулки (1) в сквозные отверстия (44, 45) корпуса (43).

Изобретение относится к способу прогнозирования точки помпажа компрессора. Технический результат заключается в автоматизации прогнозирования помпажа в рабочей характеристике газового компрессора посредством расчета CFD.

Изобретение относится к энергетическому, транспортному и авиационному двигателестроению и может быть использовано в технических объектах, где в качестве источника энергии целесообразно использовать высокотемпературную высокооборотную центростремительную турбину малой мощности с небольшим объемным расходом рабочего тела. Предлагается центростремительная турбина, содержащая корпус, радиально-осевое рабочее колесо турбины, снабженное лопаточным аппаратом. На внутренней поверхности корпуса, где касательная линия к этой поверхности в меридиональном сечении образует с осью турбины угол γ, где 25°≤γ≤30°, выполнен кольцевой выступ, перекрывающий зазор между корпусом и лопатками рабочего колеса, кроме того, кольцевой выступ выполнен с плоской поверхностью, расположенной по нормали к набегающему потоку рабочего тела, при этом лопатки рабочего колеса в меридиональном сечении повторяют форму внутренней поверхности корпуса до выступа, при этом за выступом по потоку рабочего тела лопатки выполнены со срезом по внешней кромке, причем глубина среза равна величине выступа. Технический результат предлагаемого изобретения заключается в снижении утечек рабочего тела через зазор между лопатками рабочего колеса и корпусом и, следовательно, в повышении КПД турбины. 2 з.п. ф-лы, 1 ил.

Наверх