Способ лазерного упрочнения поверхности деталей

Изобретение относится к области металлургии, в частности к термообработке поверхности материалов концентрированными источниками энергии, и может быть использовано для лазерного упрочнения поверхности деталей из железоуглеродистых сплавов. Для повышения качества обработки деталей за счет исключения зон отпуска способ лазерного упрочнения поверхности деталей включает нагрев поверхности детали лазерным лучом с использованием сканатора, при этом нагрев поверхности детали осуществляют непрерывным лазером при перемещении луча по нормали к вектору его перемещения с частотой колебаний луча 10÷200 Гц, амплитудой колебаний А=(2÷100) d и с плотностью энергии излучения 20÷26 Вт с/мм2, где d - диаметр луча на поверхности детали. 1 ил.

 

Изобретение относится к области металлургии, в частности к термообработке поверхности материалов концентрированными источниками энергии и может быть использовано для лазерного упрочнения поверхности деталей из железоуглеродистых сплавов.

Известен способ лазерной термообработки, включающий формирование зоны термической обработки за несколько проходов луча лазера с перекрывающимися зонами, сфокусированного в световое пятно лазерного излучения (Головко Л.Ф. и др. «Обеспечение качества слоев, полученных лазерной наплавкой или упрочняющей обработкой». Автоматическая сварка, 2001 г., №12, С. 47-.52).

Недостатком данного способа является низкая производительность процесса обработки (ограниченная ширина обработки за один проход лазерного луча) и относительно низкое качество обработки, обусловленное тепловым влиянием при наложении полосы на предыдущую полосу, что увеличивает количество зон отпуска на упрочненной поверхности.

Известен способ лазерной термической обработки, включающий воздействие непрерывным лучом на поверхность детали, при этом вертикальные или наклонные поверхности детали наносят параллельные дорожки упрочнения с перекрытием (патент №2425894 по кл. C21D 1/09 от 10.08.2011 г.)

Данный способ позволяет осуществлять лазерную термическую обработку крупногабаритных деталей сложной формы.

Недостатком данного способа является относительно низкое качество обработки, обусловленное большим количеством зон отпуска на обрабатываемой поверхности, приводящих к снижению прочности поверхности.

Известно техническое решение лазерного упрочнения поверхности деталей, включающее воздействие лазерным лучом на поверхность детали, при этом воздействие осуществляют сканирующим лазерным лучом при помощи сканатора (B.C. Майоров Лазерное упрочнение металлов, «Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований и прикладных разработок» Под ред. В.Я. Панченко. М.: ФИЗМАТЛИТ, 2009, Глава 12).

Недостатком способа, указанного в данном материале является относительно низкая производительность способа, обусловленная тем, что обработанная лазером площадь составляет около 20-70% от общей площади, а выполнение термической обработки со значительным перекрытием лазерных дорожек приводит к значительному тепловому влиянию при наложении полосы на предыдущую полосу, увеличению зон отпуска, что в конечном итоге снижает качество упрочнения поверхности деталей.

Задача, на решение которой направлено заявленное изобретение заключается в повышении производительности способа лазерного упрочнения поверхности деталей и качества упрочнения поверхности деталей.

Поставленная задача решается за счет того, что в способе лазерного упрочнения поверхности деталей, включающем нагрев поверхности детали лазерным лучом с использованием сканатора, нагрев поверхности детали осуществляют непрерывным лазером при перемещения луча по нормали к вектору его перемещения с частотой колебаний луча 10÷1200 Гц, амплитудой колебаний А=(2÷100) d и с плотностью энергии излучения 12÷26 Вт с/мм2, где d - диаметр луча на поверхности детали.

На фиг. 1 представлена иллюстрация способа лазерного упрочнения поверхности детали, где 1 - обрабатываемая деталь, 2 - зона нагрева, 3 - фокусирующая линза, 4 - сканатор с колеблющимся зеркалом, 5 - лазерный луч.

Способ лазерного упрочнения осуществляется следующим образом.

Плоская поверхность обрабатываемой детали 1 в виде плоской заготовки, перемещающейся по указанной на фиг. 1 стрелке, подвергается обработке сканирующим лазерным лучом 5. Использование сканатора 4 с колеблющимся зеркалом позволяет увеличить ширину зоны обрабатываемой поверхности, а перемещение луча по нормали к вектору его перемещения с частотой колебаний луча 10÷1200 Гц, с амплитудой А=(2÷100) d и с плотностью энергии излучения 12÷26 Вт с/мм2, позволяет значительно увеличить зону обрабатываемой поверхности в два, три раза по отношению к существующим способам лазерного упрочнения металлов. Ширина зоны обрабатываемой поверхности определяется амплитудой «А» (фиг. 1).

Кроме того достигается равномерность глубины закаленной зоны, значительное снижение количество зон отпуска и дефектов на поверхности. Указанный режим обработки обеспечивает однородное распределение лазерного пучка, при неизменном модовом составе пучка и многократно перемещающие его по зоне нагрева с обеспечением равномерного цикла закалки.

Таким образом, данный способ упрочнения поверхности деталей позволяет значительно повысить производительность процесса закалки, качество закалки и тем самым износостойкость покрытия.

Способ лазерного упрочнения поверхности деталей, включающий нагрев поверхности детали лазерным лучом с использованием сканатора, отличающийся тем, что нагрев поверхности детали осуществляют непрерывным лазером при перемещении луча по нормали к вектору его перемещения с частотой колебаний луча 10÷200 Гц, амплитудой колебаний А=(2÷100) d и с плотностью энергии излучения 20÷26 Вт с/мм2, где d - диаметр луча на поверхности детали.



 

Похожие патенты:

Изобретение относится к области обработки металлических изделий и/или продуктов для улучшения свойств материала этих изделий и/или продуктов. Способ обработки металлических изделий включает обработку по меньшей мере одного металлического изделия в прессовом устройстве, содержащем сосуд высокого давления, печную камеру, предусмотренную в сосуде высокого давления, и загрузочное отделение, расположенное в печной камере.

Изобретение относится к области металлургии. Для обеспечения высокой твердости кранового рельса способ изготовления рельса с закаленной головкой включает следующие стадии: создания стального рельса состава, включающего в массовых процентах: C 0,79-1,00, Mn 0,40-1,00, Si 0,30-1,00, Cr 0,20-1,00, V 0,05-0,35, Ti 0,01-0,035, N 0,002-0,0150, остальное преимущественно железо; охлаждения от температуры около 700-800°C при скорости охлаждения, имеющей верхнюю границу скорости охлаждения, определяемую верхней линией, соединяющей x-y-координаты (0 с, 800°C), (40 с, 700°C) и (140 с, 600°C), и нижнюю границу скорости охлаждения определяемую нижней линией, соединяющей x-y-координаты (0 с, 700°C), (40 с, 600°C) и (140 с, 500°C).

Изобретение относится к изготовлению закаленных деталей из листовой стали с нанесенным покрытием на основе алюминия. Способ включает получение листовой стали с предварительно нанесенным металлическим покрытием, содержащим от 4,0 до 20,0 мас.% цинка, от 1,0 до 3,5 мас.% кремния, необязательно от 1,0 до 4,0 мас.% магния и необязательно дополнительные элементы, выбранные из Pb, Ni, Zr или Hf, и остальное - алюминий и неизбежные примеси, причем соотношение Zn/Si находится в диапазоне от 3,2 до 8,0, получение заготовки, ее термическую обработку при температуре в диапазоне от 840 до 950°С для получения в стали полностью аустенитной микроструктуры, горячую формовку заготовки для получения детали, охлаждение детали с получением в стали микроструктуры, являющейся мартенситной или мартенситно-бейнитной или образованной из по меньшей мере 75% равноосного феррита, от 5 до 20% мартенсита и бейнита в количестве, меньшем или равном 10%, и фосфатирование.

Предложен электротехнический стальной лист с ориентированной зеренной структурой. Для уменьшения потерь в железе и минимизации уменьшения плотности магнитного потока за счет измельчения магнитного домена получают стальной лист, имеющий поверхность, в которой формируется бороздка, проходящая в направлении, пересекающем направление прокатки, и в которой направление глубины бороздки соответствует направлению толщины листа.

Группа изобретений относится к способу и устройству лазерного упрочнения участка поверхности обрабатываемой детали, такой как поверхность шейки коленчатого вала.

Изобретение относится к устройствам для индивидуальной закалки компонентов технического оборудования в виде шестерен, зубчатых колес или опорных колец. Устройство содержит вакуумную печь с закалочной камерой (1), которая имеет плотно закрывающиеся люки для загрузки и выгрузки обрабатываемого изделия (14).

Способ получения высокопрочного стального листа, обладающего пределом текучести YS по меньшей мере 850 МПа, прочностью при растяжении TS по меньшей мере 1180 МПа, полным удлинением по меньшей мере 14% и коэффициентом раздачи отверстия HER по меньшей мере 30%.

Изобретение относится к термической обработке конструкционных сталей и может быть использовано при производстве высокопрочной упаковочной ленты, используемой в металлургической, деревообрабатывающей и других отраслях промышленности.

СПОСОБ ПРОИЗВОДСТВА КОНСТРУКЦИОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ. .
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Способ упрочнения лезвий рабочих органов почвообрабатывающих орудий включает нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом рабочий орган выполнен из высокопрочного чугуна, нагрев поверхности тыльной стороны лезвия осуществляют постоянным током с помощью вольфрамового электрода, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, за один оборот электрода вокруг вертикальной оси линейное перемещение составит 3 мм, частота вращения ω выражается зависимостью ω=k⋅30 мин1, где k=1,5 при толщине лезвия 2,0 ≤ δ ≤ 3,0 мм, k=1,0 при толщине лезвия 3,1 ≤ δ ≤ 5,0 мм, k=0,8 при толщине лезвия 5,1 ≤ δ ≤ 7,0 мм.
Наверх