Способ получения n-[3-оксо-20(29)лупен-28-оил]-ω-аминокислот

Изобретение относится к способу получения N-бетулоноил-ω-аминокислот формулы 1, в котором целевой продукт получают взаимодействием гидрохлорида сложного эфира ω-аминокислоты в присутствии триэтиламина в течение 10-14 час с предварительно обработанным водой раствором бетулоноилхлорида в органическом растворителе, с последующим гидролизом сложноэфирной группы водно-спиртовой щелочью. Технический результат: предложен способ получения N-бетулоноил-ω-аминокислот, в котором снижается количество растворителя, для гидролиза используется нетоксический растворитель, сокращаются выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил., 4 пр.

 

Изобретение относится к способу получения бетулоноил-ω-аминокислот кислоты формулы 1.

Амиды тритерпеновых кислот (ТТК) проявляют противоопухолевую и противовирусную активность [В.В. Saxena, L. Zhu, М. Нао Boc-lysinated-betulonic acid: a potent, anti-prostate cancer agent. Bioorg. Med. Chem. 14(18), 6349-6358 (2006); О.B. Flekhter, E.I. Boreko, L.R. Nigmatullina, E.V. Tret'yakova, N.I. Pavlova, L.A. Baltina, S.N. Nikolaeva, O.V. Savinova, V.F. Eremin, F.Z. Galin, and G.A. Tolstikov Synthesis and Antiviral Activity of Betulonic Acid Amides and Conjugates with Amino Acids. Rus J Bioorg. Chem, Vol. 30, No. 1, 2004, pp. 80-88]. Производные бетулоновой кислоты, содержащие остатки аминокислот, являются перспективными корректорами цитостатической полихимиотерапии опухолей [Т.Г. Толстикова, Г.А. Толстиков, И.В. Сорокина, Э.Э. Шульц, Н.И. Петренко, Н.Ф. Салахутдинов Корректор цитостатической полихимиотерапии Пат РФ 2353623, 17.09.2007; И.В. Сорокина, Т.Г. Толстикова Н.А. Жукова, Д.С. Баев, Т.Г. Толстиков, А.Н. Антимонова, Н.И. Петренко, Э.Э. Шульц, В.П. Николин, Н.А. Попова Средство для коррекции цитостатической полихимиотерапии с противовоспалительной активностью Пат РФ 2425680, 19.05.2010]. Наиболее удобным и рациональным способом получения амидов ТТК является взаимодействие хлорангидридов ТТК с аминами [S. Sommerwerk, L. Heller, J. Kuhfs, R. Csuk Selective Killing of Cancer Cells with Triterpenoic Acid Amides - The Substantial Role of an Aromatic Moiety Alignment European Journal of Medicinal Chemistry 122 (2016) 452-464; M. Kahnt, L. Fischer, A. Al-Harrasi, R. Csuk Ethylenediamine Derived Carboxamides of Betulinic and Ursolic Acid as Potential Cytotoxic Agents, Molecules 2018, 23(10), 2558]. Для ряда ТТК содержащих кетогруппы (урсоновая, бетулоновая), для получения хлорангидридов используют взаимодействие ТТК с оксалил хлоридом (ОХ), поскольку кетопроизводные могут образовывать побочные продукты при взаимодействии с производными серы и фосфора, обычно применяемыми для получения хлорангидридов. Для полноты превращения в хлорангидрид используют избыток ОХ (обычно используют двукратное мольное количество ОХ по отношению к ТТК). Удаление остаточного ОХ необходимо для предотвращения образования побочных продуктов при ацилировании аминов. Во избежание деструкции бетулоноилхлорида удаление ОХ проводят в вакууме при низкой температуре, для полного удаления используют многократную совместную отгонку с легкокипящим растворителем (дихлорметаном). Прототипом данного изобретения является способ получения амидов бетулоновой кислоты взаимодействием бетулоноилхлорида с гидрохлоридом эфира аминокислоты в присутствии триэтиламина с последующим гидролизом сложноэфирной группы неорганическим основанием в системе метанол-тетрагидрофуран вода [N.I. Petrenko, N.V. Elantseva, V.Z. Petukhova, M.M. Shakirov, Е.Е. Shul'ts, and G.A. Tolstikov, Synthesis of Betulonic Acid Derivatives Containing Amino-Acid Fragments, Chemistry of Natural Compounds, Vol. 38, No. 4, 2002, pp. 331-339.

По методу-прототипу после образования бетулоноилхлорида остаточный ОХ удаляют трех-четырехкратным растворением-концентрированием реакционной смеси в вакууме при температуре ≤30°С, с добавлением CH2Cl2 в качестве растворителя для осуществления полноты удаления остаточного ОХ.

Технологическими недостатками способа-прототипа - являются трудоемкость, большие временные затраты на процесс, использование сложного оборудования (роторный испаритель, вакуум-насос, многократное растворение и концентрирование в узком температурном диапазоне), большой расход хлорорганического растворителя.

Экологическими недостатками способа-прототипа являются выброс паров хлористого метилена в атмосферу, использование токсичных растворителей для гидролиза сложноэфирной группы эфироамида.

Предлагаемый способ приведен на схеме 1.

Бетулоновую кислоту в растворе дихлорметана обрабатывают избытком ОХ. Остаточный ОХ удаляют быстрой промывкой органической фазы ледяной водой. При обработке водой ОХ быстро гидролизуется с образованием газообразных продуктов и хлористого водорода, который отделяют вместе с водной фазой. При обработке водой тритерпеновое производное находится в органической фазе вследствие исключительно низкой растворимости тритерпеноидов в воде, кроме этого, стерическая затрудненность хлоркарбонильной группы бетулоноилхлорида препятствует его взаимодействию с водой, поэтому бетулоноилхлорид сохраняется в органическом растворе. Водную фазу отделяют, а органическую фазу, содержащую хлорангидрид ТТК, используют в реакции с аминами.

Гидролиз эфироамидов 4 для получения целевого соединения осуществляют неорганическим основанием в водно-спиртовой среде, поскольку амиды тритерпеновых кислот являются исключительно стабильными к гидролизу в отличие от эфиров аминокислот. Преимуществами предлагаемого способа при получении бетулоноилхлорида и ацилировании являются сокращение времени и упрощение обработки, уменьшение энергетических затрат, снижение расхода растворителя (хлористого метилена), уменьшение выбросов в окружающую среду. Преимуществом предлагаемого способа при гидролизе эфира является также использование менее токсичного и доступного растворителя (водного спирта) в отличие от системы метанол-тетрагидрофуран-вода по способу прототипу.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение раствора бетулоноилхлорида.

Бетулоновую кислоту (30 г, 66 ммоль) загружают в 500 мл колбу Эрленмейера, с хлоркальциевой трубкой и капельной воронкой и растворяют в сухом CH2Cl2 (120 мл) при перемешивании на магнитной мешалке. К охлажденному раствору прибавляют по каплям в течение 20-30 мин раствор хлористого оксалила (16.9 г, 12.3 мл, 132 ммоль) в сухом CH2Cl2 (30 мл), предварительно охлажденный до +2÷+10°С. Реакционную массу выдерживают в течение 12 ч при Т комн. Смесь промывают водой со льдом (~250 мл) в течение ~10 мин, температура смеси при обработке 0-10°С. Органическую фазу отделяют и немедленно используют в реакции ацилирования.

Пример 2а. Получение N-[бетулоноил]-2-амино-этановой кислоты

К раствору бетулоноилхлорида в CH2Cl2 после промывки водой, полученному согласно примеру 1, немедленно добавляют предварительно измельченный метиловый эфир глицина гидрохлорид (10.8 г, 86 ммоль) и Et3N (26 г, 35,8 мл 200 ммоль), (температура при прибавлении ≤10-15°С) при перемешивании и оставляют на ночь (10-14 час).

Реакционную массу обрабатывают смесью 10% раствора HCl (200 мл). Органический раствор отделяют, сушат и концентрируют в вакууме (роторный испаритель) при Т бани 50-60°С. Полученный концентрат растворяют в 200 мл EtOH. К полученному раствору продукта в EtOH прибавляют при перемешивании заранее приготовленный и охлажденный до комнатной температуры раствор NaOH (65,0 г) в дистиллированной воде (0,133 л). Реакционную смесь перемешивают при комнатной температуре в течение 10-14 час и выливают на смесь льда и соляной кислоты. Осадок продукта отделяют на фильтре, промывают водой и сушат на воздухе при 30-50°С, получают 28 г целевого продукта (84% считая на исходную бетулоновую кислоту).

ИК, ν/см-1: 1640 (CONH); 1700 (С=О); 3450 (NH).

ЯМР 1Н (400 МГц, CDCl3, δ, м.д., Гц): 0.91 (с, 3Н), 0.95 (с, 3Н), 0.97 (с, 3Н), 1.01 (с, 3Н), 1.06 (с, 3Н), 1.18-2.10 (м, 21Н, СН2, СН); 1.67 (с 3Н, С(20)Ме); 2.30-2.55 (м, 3Н, С(13)Н, С(16)Н2); 3.07 (м, 1Н, С(19)Н); 4.03 (м, 2Н, CH2NH); 4.59 с, 4.72 с (2Н, С(29)Н2); 6.32 (1Н, NH).

ЯМР 13С (100 МГц, CDC13, δ, м.д., Гц): 39.39 (С-1, т); 33.89 (С-2, т); 218.82 (С-3, с); 47.13 (С-4, с); 54.74 (С-5, д); 19.43 (С-6, т); 33.42 (С-7, т); 40.45 (С-8, с); 49.74 (С-9, д); 36.67 (С10, с); 21.22 (С-11, т); 25.39 (С-12, т); 37.55 (С-13, д); 42.31 (С-14, с); 29.08 (С-15, т); 33.26 (С-16, т); 55.52 (С-17, с); 49.74 (С-18, д); 46.38 (С-19, д); 150.43 (С-20, с); 30.51 (С-21, т); 38.04 (С-22, т); 26.42 (С-23, к); 20.80 (С-24, к); 15.72а (С-25, к); 15.58а (С-26, к); 14.32 (С-27, к); 177.07 (С-28, с); 109.30 (С-29, т); 19.21 (С-30, к); 41.05 (С-31, т); 173.16 (СООН, с).

Характеристики продукта соответствуют литературным данным N.I. Petrenko, N.V. Elantseva, V.Z. Petukhova, M.M. Shakirov, Е.Е. Shul'ts, and G.A. Tolstikov, Synthesis of Betulonic Acid Derivatives Containing Amino-Acid Fragments, Chemistry of Natural Compounds, Vol. 38, No. 4, 2002, pp. 331-339.

Пример 2б. Получение N-[бетулоноил]-3-амино-пропионовой кислоты

К раствору бетулоноилхлорида в CH2Cl2 после промывки водой, полученному согласно примеру 1, немедленно добавляют предварительно измельченный метиловый эфир β-аланина гидрохлорид (12 г, 86 ммоль) и Et3N (26 г, 35,8 мл 200 ммоль), (температура при прибавлении ≤10-15°С) при перемешивании и оставляют на ночь (10-14 час).

Выделение эфироамида и его гидролиз проводят аналогично примеру 2а. После подкисления, промывки водой и осушки выделяют N-[бетулоноил]-3-амино-пропионовую кислоту в виде белого порошка. Выход в расчете на исходную бетулоновую кислоту 81%. Характеристики продукта соответствуют литературным данным.

ИК, ν/см-1: 1637 (CONH); 1705 (С=O); 3400 (NH).

ЯМР 1H (400 МГц, CDCl3, δ, м.д., Гц): 0.87 (3Н, с, Ме-25), 0.92 (6Н, с, Ме-26, Ме-27), 0.97 (3Н, с, Ме-24), 1.01 (3Н, с, Ме-23), 1.62 (3Н, с, Ме-29), 2.56 (2Н, дд, J1=5.1, J2=5.1, H-2'a, H-2'b), 3.03 (1H, ддд, J1=10.8, J2=10.3, J3=3.6, H-19), 3.48 (2H, м, H-31a, H-31'b), 4.54 (1H, y.c., H-30), 4.68 (1H, y.c., н-30), 6.30 (1H, дд, J1=5.7, J2=5.7, -NH).

39.37 (С-1, т); 33.84 (С-2, т); 218.74 (C-3, c); 47.08 (C-4, c); 54.69 (С-5, д); 19.40 (С-6, т); 33.40 (C-7, т); 40.43 (C-8, c); 49.66 (С-9, д); 36.64 (C-10, c); 21.23 (C-11, т); 25.37 (С-12, т); 37.57 (C-13, д); 42.26 (C-14, c); 29.13 (С-15, т); 33.27 (С-16, т); 55.43 (С-17, с); 49.69a (С-18, д); 46.43 (C-19, д); 150.38 (C-20, c); 30.53 (С-21, т); 38.04 (С-22, т); 26.40 (С-23, к); 20.75 (С-24, к); 15.70 (C-25, к); 15.57 (С-26, к); 14.29 (С-27, к); 176.55 (C-28, c); 109.27 (С-29, т); 19.19 (С-30, к); 34.48 (C-31, т); 33.62 (C-32, с); (C-33, c); 176.22 (СООН, c).

Пример 2в. Получение N-[бетулоноил]-4-амино-бутановой кислоты

К раствору бетулоноилхлорида в CH2Cl2 после промывки водой, полученному согласно примеру 1, немедленно добавляют предварительно измельченный метиловый эфир γ-аминомасляной кислоты гидрохлорид (13.2 г, 86 ммоль) и Et3N (26 г, 35,8 мл 200 ммоль), (температура при прибавлении ≤10-15°С) при перемешивании и оставляют на ночь (10-14 час). Выделение эфироамида и его гидролиз проводят аналогично примеру 2а. После подкисления, промывки водой и осушки выделяют N-[бетулоноил]-4-амино-бутановую кислоту в виде белого порошка. Выход в расчете на исходную бетулоновую кислоту 83%.

ИК, ν/см-1: 1637 (CONH); 1707 (С=О); 3400 (NH).

ЯМР 1Н (400 МГц, CDCl3, δ, м.д., Гц): 0.90 (3Н, с, Ме-25), 0.94 (6Н, д, J=2.6 Hz, Ме-26, Ме-27), 0.99 (3Н, с, Ме-24), 1.04 (3Н, с, Ме-23), 1.66 (3Н, с, Ме-29), 1.77-1.96 (6Н, м, H-2'a, H-2'b), 2.33-2.43 (4Н, м, Н-3'а, H-3'b), 3.01 (1H, ддд, J1=J2=11.4, J3=3.4, Н-19), 3.31 (2Н, м, H-1'a, Н-1'b), 4.57 (1Н, y.c., Н-29), 4.71 (1H, y.c., Н-29), 5.86 (1Н, дд, J1=J2=6.1, -NH).

ЯМР 13С (100 МГц, CDCl3, δ, м.д., Гц): 38.31 (С-1, т); 34.01 (С-2, т); 218.40 (С-3, с); 47.22 (С-4, с); 54.86 (С-5, д); 19.49 (С-6, т); 33.54 (С-7, т); 40.54 (С-8, с); 49.9 (С-9, д); 36.77 (С10, с); 21.32 (С-11, т); 25.46 (С-12, т); 37.64 (С-13, д); 42.38 (С-14, с); 29.31 (С-15, т); 31.48 (С-16, т); 55.52 (С-17, с); 49.84 (С-18, д); 46.48 (С-19, д); 150.6 (С-20, с); 30.68 (С-21, т); 36.77 (С-22, т); 26.46 (С-23, к); 20.88 (С-24, к); 15.77 (С-25, к); 15.82 (С-26, к); 14.42 (С-27, к); 177.35 (С-28, с); 109.34 (С-29, т); 19.34 (С-30, к); 39.49 (С-31, т); 24.88 (С-32, т); 38.45 (С-33, т); 176.90 (СООН).

1. Способ получения N-бетулоноил-ω-аминокислот формулы 1,

заключающийся в том, что целевой продукт получают взаимодействием гидрохлорида сложного эфира ω-аминокислоты в присутствии триэтиламина в течение 10-14 час с предварительно обработанным водой раствором бетулоноилхлорида в органическом растворителе, с последующим гидролизом сложноэфирной группы водно-спиртовой щелочью.

2. Способ по п. 1, отличающийся тем, что в процессе получения используют раствор бетулоноилхлорида, получаемый взаимодействием раствора бетулоновой кислоты в дихлорметане с избытком оксалил хлорида, с последующей отмывкой остаточного количества оксалил хлорида водой при 0-10°С и отделением водной фазы от органической; органическую фазу, содержащую бетулоноилхлорид, используют для получения амидов без дополнительной обработки немедленно после отделения водной фазы.

3. Способ по п. 1, отличающийся тем, что гидролиз эфироамида для получения целевого продукта осуществляют водно-спиртовой щелочью при комнатной температуре в течение 10-14 час.



 

Похожие патенты:

Изобретение относится к химическому соединению 17α-ацетокси-3β-гексаноилокси-6-метилпрегна-4,6-диен-20-он формулы I, обладающему гестагенной, контрацептивной и противоопухолевой активностью.
Изобретение относится к способу получения бисформиата бетулина, включающий, кипячение коры берёзы с последующей фильтрацией, концентрированием маточного раствора, разбавлением маточного раствора с последующей фильтрацией и сушкой полученного целевого продукта, а далее с повторной обработкой коры ацетоном и выделением дополнительной порции целевого продукта, отличающийся тем, что одновременно в качестве растворителя и экстрагента используют муравьиную кислоту, общей продолжительностью процесса 20 часов при температуре 105°C.

Изобретение относится к способу получения (8R)-8,13-цикло-13,14-секо-5β-прегн-2-ен-6,14,20-триона формулы (1), в котором 2,3-O-мезилат постстерона облучают ультразвуком (22 кГц, 20 Вт) в растворе диметилформамида в присутствии 12 эквивалентов йодистого натрия и 12 эквивалентов цинка в течение 4 ч с последующей водной обработкой реакционной смеси и выделением целевого продукта с помощью колоночной хроматографии на силикагеле.

Изобретение относится к способу получения бетулина, включающему экстракцию этиловым спиртом подготовленного сырья при повышенных температуре и давлении, при этом температура составляет 90–150ºС, давление - не менее 10 атм, расход этилового спирта составляет 5-25 кг/кг сырья, продолжительность экстракции составляет 20 минут – 4 часа.

Изобретение относится к способу получения дициннамата бетулина ацилированием бетулина, в котором в качестве ацилирующего агента используют коричную кислоту, при этом ацилирование проводят сплавлением бетулина с коричной кислотой при температуре 220-230°С в течение 5-7 минут при мольном соотношении бетулина и коричной кислоты равном 1:4 с последующей перекристаллизацией целевого продукта из этанола.

Изобретение относится к способу получения 6-метиленгидрокортизона (11β,17α,21-тригидрокси-6-метиленпрегн-4-ен-3,20-диона) или его эфиров общей формулы I в которой R=COCF3 или Н; R1=СОСН3 или Н, из 21-ацетата гидрокортизона формулы II, последовательностью превращений, включающей защиту 11β-гидроксильной группы этерификацией производным трифторуксусной кислоты в среде апротонного растворителя в условиях основного катализа с использованием эффективного количества катализатора с образованием 21-ацетокси-17α-гидрокси-11β-трифторацетилоксипрегн-4-ен-3,20-диона формулы III, енолэтерификацию Δ4-3-кетосистемы полученного соединения действием триалкилортоформиата в присутствии кислого катализатора с образованием 3-алкоксиэфира Δ3,5-3-гидроксипроизводного общей формулы IV, конденсацию его с реагентом, полученным из формальдегида и вторичного амина, в присутствии кислого катализатора с образованием смеси 6α- и 6β-изомеров 6-(N-метил-Т-фенил)-аминометилпроизводного общей формулы V, расщепление полученной смеси стероидных оснований Манниха по связи C-N действием протонной минеральной кислоты в присутствии солей галогеноводородной кислоты и удаление защитных группировок 11β- и 21-гидроксильных групп полностью или частично.

Изобретение относится к способу получения 6-дегидро-6-метилгидрокортизона (11β,17α,21-тригидрокси-6-метилпрегна-4,6-диен-3,20-диона) или его эфиров общей формулы I в которой R=COCF3 или Н; R1=СОСН3 или Н, из 21-ацетата гидрокортизона формулы II, последовательностью превращений, включающей защиту 11β-гидроксильной группы этерификацией производным трифторуксусной кислоты в среде апротонного растворителя в условиях основного катализа с использованием эффективного количества катализатора с образованием 21-ацетокси-17α-гидрокси-11β-трифторацетилоксипрегн-4-ен-3,20-диона формулы III, енолэтерификацию Δ4-3-кетосистемы полученного соединения действием триалкилортоформиата в присутствии кислого катализатора с образованием 3-алкоксиэфира Δ3,5-3-гидроксипроизводного общей формулы IV, конденсацию его с реагентом Манниха, образующимся in situ из формальдегида и вторичного амина, в присутствии кислого катализатора с образованием смеси 6α- и 6β-изомеров 6-(N-метил-N-фенил)-аминометилпроизводного общей формулы V, расщепление полученной смеси стероидных оснований Манниха по связи C-N действием протонной минеральной кислоты в присутствии солей галогеноводородной кислоты с образованием 6-метиленпроизводного формулы VI, изомеризацию 6-экзометиленовой связи в 6,7-эндометиленовую; удаление защитных группировок 11β- и 21-гидроксильных групп полностью или частично; этерификацию 21-гидроксильной группы производным уксусной кислоты в условиях основного катализа.

Изобретение относится к способу получения 6α-метилгидрокортизона (11β, 17α, 21-тригидрокси-6α-метилпрегн-4-ен-3,20-диона) или его эфиров общей формулы I в которой R=COCF3 или Н; R1=СОСН3 или Н, из 21-ацетата гидрокортизона формулы II, последовательностью превращений, включающей защиту 11β-гидроксильной группы этерификацией производным трифторуксусной кислоты в среде апротонного растворителя в условиях основного катализа с образованием 21-ацетокси-17α-гидрокси-11β-трифторацетилоксипрегн-4-ен-3,20-диона формулы III, енолэтерификацию Δ4-3-кетосистемы полученного соединения действием триалкилортоформиата в присутствии кислого катализатора с образованием 3-алкоксиэфира Δ3,5-3-гидроксипроизводного общей формулы IV, конденсацию его с реагентом Манниха в присутствии кислого катализатора с образованием смеси 6α- и 6β-изомеров 6-(N-метил-N-фенил)-аминометилпроизводного общей формулы V, расщепление полученной смеси стероидных оснований Манниха по связи C-N действием минеральной кислоты в присутствии солей галогеноводородной кислоты с образованием 6-метиленпроизводного формулы VI, изомеризацию 6-экзометиленовой связи в 6,7-эндометиленовую с образованием соединения VII; каталитическое гидрирование 6,7-эндометиленовой связи с образованием смеси 6α-метил- и 6β-метил-изомеров и последующей изомеризацией 6β-метил-изомера в 6α-метилпроизводное формулы VIII, удаление защитных группировок 11β- и 21-гидроксильных групп полностью или частично.

Изобретение относится к способу получения 6-(N-метил-N-фенил)аминометил-гидрокортизона (11β,17α,21-тригидрокси-6-(N-метил-N-фенил)аминометилпрегн-4-ен-3,20-диона) или его эфиров общей формулы I в которой R=COCF3 или Н; R1=СОСН3 или Н, из 21-ацетата гидрокортизона формулы II, последовательностью превращений, включающей защиту 11β-гидроксильной группы этерификацией производным трифторуксусной кислоты в среде апротонного растворителя в условиях основного катализа с использованием эффективного количества катализатора с образованием 21-ацетокси-17α-гидрокси-11β-трифторацетоксипрегн-4-ен-3,20-диона формулы III, енолэтерификацию Δ4-3-кетосистемы полученного соединения действием триалкилортоформиата в присутствии кислого катализатора с образованием 3-алкоксиэфира Δ3,5-3-гидроксипроизводного общей формулы IV, конденсацию его с реагентом Манниха, образующимся in situ из формальдегида и N-метиланилина, в присутствии кислого катализатора и удаление защиты 11β- и 21-гидроксильных групп методами химического сольволиза полностью (R=R1=H) или частично (R=Н; R1=СОСН3).

Изобретение относится к способу получения диацетата мепрегенола, включающему стадию восстановления ацетата мегестрола борогидридом натрия в спиртовом растворе с получением стероидного спирта (17-ацетата мепрегенола) и реакцию его ацетилирования уксусным ангидридом, в котором стадию восстановления проводят в водном изопропиловом спирте с содержанием воды от 10 до 20% в присутствии соляной кислоты и при температуре, поддерживаемой в интервале 11±2°С, ацетилирование проводят в ацетоне в присутствии третичного амина или комбинации третичных аминов в качестве катализатора с последующим осаждением целевого продукта водным аммиаком.

Изобретение относится к органической химии. Способ получения бетулина осуществляют в замкнутом экстракционном технологическом комплексе, включающем измельчение бересты, экстракцию толуолом в экстракторе проточного типа (1) при непрерывном противоточном движении бересты и растворителя.

Изобретение относится к применение 3-О-Сульфамат-16,16-диметил-D-гомоэквиленина в качестве противоонкологического агента при моно- и адъювантной терапии онкологических заболеваний, таких как гепатокарцинома, карцинома желудка, рак легкого, хроническая миелогенная лейкемия, рак молочной железы, включая трижды негативную форму рака молочной железы.
Изобретение относится к способу получения бисформиата бетулина, включающий, кипячение коры берёзы с последующей фильтрацией, концентрированием маточного раствора, разбавлением маточного раствора с последующей фильтрацией и сушкой полученного целевого продукта, а далее с повторной обработкой коры ацетоном и выделением дополнительной порции целевого продукта, отличающийся тем, что одновременно в качестве растворителя и экстрагента используют муравьиную кислоту, общей продолжительностью процесса 20 часов при температуре 105°C.

Изобретение относится к способу получения бетулина, включающему экстракцию этиловым спиртом подготовленного сырья при повышенных температуре и давлении, при этом температура составляет 90–150ºС, давление - не менее 10 атм, расход этилового спирта составляет 5-25 кг/кг сырья, продолжительность экстракции составляет 20 минут – 4 часа.

Изобретение относится к способу получения дициннамата бетулина ацилированием бетулина, в котором в качестве ацилирующего агента используют коричную кислоту, при этом ацилирование проводят сплавлением бетулина с коричной кислотой при температуре 220-230°С в течение 5-7 минут при мольном соотношении бетулина и коричной кислоты равном 1:4 с последующей перекристаллизацией целевого продукта из этанола.

Изобретение относится к лупановым и 2,3-секолупановым С28 амидам с фрагментом 2-аминобутан-1-ола общей формулы: в которой R1=(R)-(-)-2-бутан-1-ол, или R1=(S)-(+)-2-бутан-1-ол, или R1=(R,S)-(+/-)-2-бутан-1-ол, или R1=(R)-(-)-2-бутан-1-ол, или R1=(S)-(+)-2-бутан-1-ол, или R1=(R,S)-(+/-)-2-бутан-1-ол, или R1=(R)-(-)-2-бутан-1-ол, или R1=(S)-(+)-2-бутан-1-ол, или R1=(R,S)-(+/-)-2-бутан-1-ол.

Изобретение относится к способу получения сукцината аллобетулина формулы: ацилированием аллобетулина с очисткой целевого продукта растворением в хлороформе и пропусканием через колонку с оксидом алюминия, в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование проводят сплавлением аллобетулина с янтарной кислотой при температуре 220-230°С в течение 3-5 минут при мольном соотношении аллобетулина и янтарной кислоты, равном 1:2, причем после очистки кипячением в хлороформе целевой продукт кипятят с активированным углем, а затем пропускают через оксид алюминия.

Изобретение относится к N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламину структурной формулы ,обладающему цитотоксической активностью в отношении опухолевых клеток человека.

Изобретение относится к способу получения бетулина из бересты березы, включающему предварительную активацию бересты и экстракцию бетулина 86%-ным раствором этилового спирта, при этом активацию осуществляют при помощи ультразвукового воздействия с интенсивностью в диапазоне 10-15 Вт/см2 на частоте не менее 20-22 кГц при температуре 40°C в течение 5-25 мин, а последующую экстракцию интенсифицируют ультразвуковым воздействием с уменьшенной до 5 Вт/см2 интенсивностью колебаний при температуре не менее 40°C в течение времени, определяемого исходным размером частиц коры березы.

Изобретение относится к способу получения дисукцината бетулинола формулы: ацилированием бетулинола, в котором в качестве ацилирующего агента используют янтарную кислоту, при этом ацилирование проводят сплавлением бетулинола с янтарной кислотой при температуре 185-190°C в течение 20-25 минут при мольном соотношении бетулинола и янтарной кислоты равном 1:3 с последующей перекристаллизацией целевого продукта из этанола.
Наверх