Теплообменная поверхность

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Изобретение заключается в выполнении теплообменной поверхности для интенсификации теплоотдачи при турбулентном течении теплоносителя в виде периодически нанесенных выемок, которые выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку и с оптимальной геометрической формой. Технический результат - повышение теплогидравлической эффективности теплообменной поверхности. 2 ил., 2 табл.

 

Изобретение относиться к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена (Патент РФ №2425260, МПК F15D 1/10 (2006.01) Заявка 2009111020/06 от, 31.08.2006, опубликовано 27.07.2011 Бюл. №21). Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены выемки, образованные сопряженными по общим касательным выпуклыми и вогнутыми поверхностями второго порядка, при этом сопряжение выемки с исходно гладкой поверхностью осуществляется с помощью выпуклых поверхностей образующих скаты, для которых в местах сопряжения исходно гладкая поверхность является касательной, причем вогнутая поверхность, образующая донную часть выемки, выполнена гладкой или с обтекателем.

Наиболее близким аналогом к заявляемому изобретению являются теплообменные поверхности с овальными выемками (Isaev S.A., Leont'ev А.I., Kornev N.V., Hassel Е., and Chudnovskii Ya. P. Heat-Exchange Enhancement for Laminar and Turbulent Flows in a Narrow Channel with One-Row Oval Dimples // High Temperature, 2015, Vol. 53, No. 3, pp. 375-387). Поверхность характеризуется тем, что на гладкой поверхности с защитным слоем или без него выполнены овальные выемки, состоящие из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной 1. Приведенные результаты численных исследований показывают, что использование данной поверхности с овальными выемками (относительной глубиной h/b=0,2; относительным удлинением l/b=0,8; радиусом скругления кромок r/b=0,25; угол натекания потока на овальную выемку ϕ=45°) позволяет повысить уровень коэффициентов теплоотдачи на ней до Nu/Nuгл=1,61 раза при ламинарном режиме течения (Re=2500) при росте коэффициентов гидросопротивления в ξ/ξгл=1,31 раза по сравнению с гладкой поверхностью, что обеспечивает значения фактора теплогидравлической эффективности (аналогии Рейнольдса) на уровне (Nu/Nuгл)/(ξ/ξгл)=1,23. Использование теплообменной поверхности с овальными выемками при турбулентном режиме течения (Re=20000) позволяет повысить уровень коэффициентов теплоотдачи на ней до Nu/Nuгл=1,52 раза при росте коэффициентов гидросопротивления в ξ/ξгл=1,73 раза по сравнению с гладкой поверхностью, что обеспечивает значения фактора теплогидравлической эффективности (аналогии Рейнольдса) на уровне (Nu/Nuгл)/(ξ/ξгл)=0,88. Исследования на основе численного моделирования, методология которого изложена в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316 с.), прошла многочисленные аппробации и верификации, реализована в программном комплексе "VP2/3 Thermophysics" (Программный комплекс "VP2/3 Thermophysics" для численного моделирования вихревой интенсификации теплогидродинамических процессов в теплообменных аппаратах / Исаев С.А., Баранов П.А., Усачов А.Е. // Свидетельство о государственной регистрации программы для ЭВМ №2015619439. Дата поступления 08.06.2015. Дата регистрации 03.09.2015).

Однако известные теплообменные поверхности характеризуются недостаточной теплогидравлической эффективностью.

Технической проблемой, на решение которой направлено заявляемое изобретение, является повышение теплогидравлической эффективности.

Технический результат, на достижение которого направлено данное изобретение, заключается в увеличении тепловой и теплогидравлической эффективности.

Технический результат достигается за счет того, что теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя выполнена в виде периодически нанесенных углублений. Новым является то, что углубления выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной , развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями:

или ;

ϕ=45°;

h/b=0,18-0,37;

r=0,0256;

- длина цилиндрической части выемки, мм;

- длина выемки, мм;

h - глубина, мм;

b - ширина выемки, мм;

r - радиус скругления кромок выемки, мм;

ϕ - угол натекания потока на выемку, градусы.

Перечень фигур:

На фигуре 1 представлена геометрия предлагаемой теплообменной геометрии с условным обозначением геометрических размеров и направления течения потока относительно теплообменной геометрии.

На фигуре 2 представлен поперечный срез предлагаемой геометрии в сечении А-А обозначенном на фигуре 1 с указанием условных обозначений геометрических размеров.

В таблице 1 показаны параметры овально-траншейных выемок, которые были использованы в анализе теплогидравлической эффективности в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013.316 c.).

В таблице 2 представлены характеристики эффективности выемок переменной ширины по результатам сравнительного анализа.

Данная геометрия выемок является поверхностным генератором спиралевидных высокоинтенсивных моновихрей и позволяет повысить скорость вторичного течения до величин порядка характерной скорости потока в стесненном канале (среднемассовой или максимальной), что в несколько раз превышает скорости вторичного течения, индуцированные традиционными сферическими выемками, и отличается высокой стабильностью и интенсивностью вихревого течения в следе за ним по сравнению со сферическим аналогом, предложенными в (Поверхность тела для уменьшения трения и поверхность тела для интенсификации теплообмена / Кикнадзе Г.И., Гачечиладзе И.А. // Патент РФ №2425260. Заявка 2009111020/06 от, 31.08.2006. Опубликовано 27.07.2011 Бюл. №21) и овальными выемками, описанными в (Isaev S.A., Leont'ev A.I., Kornev N.V., Hassel Е., and Chudnovskii Ya. P. Heat-Exchange Enhancement for Laminar and Turbulent Flows in a Narrow Channel with One-Row Oval Dimples // High Temperature, 2015, Vol. 53, No. 3, pp. 375-387), обеспечивая значительное превосходство овально-траншейных выемок по тепловой и теплогидравлической эффективности.

Сравнительный анализ теплообменных поверхностей с аналогом (сферической выемки), прототипом (овальной выемки) и предлагаемой формой интенсификатора теплообмена в форме овально-траншейной выемки проводился на основе численного моделирования, методология которого описана в (Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюкен: LAP LAMBERT Academic Publishing. 2013. 316 с.), прошла многочисленные аппробации и верификации, реализована в программном комплексе "VP2/3 Thermophysics" (Программный комплекс "VP2/3 Thermophysics" для численного моделирования вихревой интенсификации теплогидродинамических процессов в теплообменных аппаратах / Исаев С.А., Баранов П.А., Усачов А.Е. // Свидетельство о государственной регистрации программы для ЭВМ №2015619439. Дата поступления 08.06.2015. Дата регистрации 03.09.2015).

Сравнительный анализ теплообмена на теплообменных поверхностях с аналогом (сферической выемки), прототипом (овальной выемки) и предлагаемой формой интенсификатора теплообмена в форме овально-траншейной выемки проведен в канале прямоугольного сечения шириной B=2,5⋅dк и высотой H=0,33⋅dк. В качестве характерного размера выбран диаметр сферической выемки, нормированный как dк=1. Методически важно было зафиксировать площадь пятна выемки и его относительную глубину h/dк=0,13(h/b=0,18-0,37) (фактически выемки оказываются равнообъемными). Относительная глубина выемок составляет h/dк=0,13 Выемки располагаются на некотором расстоянии от входа в канал, выбранном из условия их незначительного влияния на входные условия. Радиус скругления кромок принимается равным r=(0,025 dк). При сохранении площади пятна овально-траншейной выемки, равного площади пятна базовой сферической выемки, ее ширина изменяется в переделах b=(0,731…0,346)⋅dк, а удлинение, отнесенное к ширине, составило (фиг. 1 и табл. 1). Угол наклона овально-траншейной выемки принят равным ϕ=45°. Число Рейнольдса выбрано равным Red=104 (ReH=3333).

Суммарное число Нуссельта Nu0(1) рассчитывается на контрольной площади прямоугольного участка без выемки и с выемкой Nu(1). Гидравлические потери определяются по границам контрольного участка с выемкой ξ(1) и плоской поверхности ξ0(1). Эффективность Е'=(Nu(1)/Nu0(1))/(ξ(1)0(1)), определяемая по критерию аналогии Рейнольдса, рассчитывается как отношение тепловой эффективности Nu(1)/Nu0(1) на выделенном участке к относительным гидравлическим потерям ξ(1)0(1) на границах участка.

В ходе численных исследований показано, что с увеличением удлинения овально-траншейной выемки до теплогидравлические характеристики прямоугольного участка канала с выемкой кардинально улучшаются E'(1)=1,163 по сравнению со сферической выемкой E'(1)=1,002. Причем для сферической выемки Е'<1 при учете увеличения площади омываемой стенки канала (табл. 2). Темп возрастания тепловой эффективности значительно опережает рост гидравлических потерь. Тепловая эффективность овально-траншейной выемки при в 6 раз выше (Nu(1)/Nu0(1)=1,243), чем у сферической выемки без учета площади внутренней поверхности (Nu(1)/Nu0(1)=1,063), и в 4 раза выше при учете площади поверхности выемки (Nu(1)/Nu0(1)=1,19 против Nu(1)/Nu0(1)=1,054). Гидравлические потери на участке с овальной выемкой имеют максимум при ширине выемки b=0,549 (длина полуцилиндрической вставки ), который в 1,5 раза превышает гидравлические потери в случае сферической выемки. Гидравлические потери на участке с овально-траншейной выемкой (), оказались наименьшими и всего лишь в ξ(1)0(1)=1,13 раза выше потерь для участка с базовой сферической выемкой.

Таким образом, сравнение предлагаемой конструкции теплообменной поверхности с овально-траншейными выемками по теплогидравлической эффективности (критерию аналогии Рейнольдса) с поверхностями со сферическими и овальными выемками показывает их преимущество при соблюдении геометрических соотношений размеров выемки: или ; ϕ=45°; h/b=0,18-0,37; r=0,025b.

Теплообменная поверхность для интенсификации теплоотдачи при турбулентном течении теплоносителя, выполненная в виде периодически нанесенных выемок, отличающаяся тем, что выемки выполнены овально-траншейной формы, состоящей из двух половинок сферической выемки диаметром b, соединенных цилиндрической вставкой длиной l, развернутых под углом ϕ к набегающему потоку, с геометрическими соотношениями:

l/b=4,7-5,78 или lк/b=5,57-6,78;

ϕ=45°;

h/b=0,18-0,37;

r=0,025b;

l - длина цилиндрической части выемки, мм;

lк - длина выемки, мм;

h - глубина, мм;

b - ширина выемки, мм;

r - радиус скругления кромок выемки, мм;

ϕ - угол натекания потока на выемку, градусы.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Изобретение заключается в том, что в теплообменнике (1), содержащем верхнюю пластину (2) и нижнюю пластину (3), а также множество структурированных пластин (4, 5), расположенных между верхней пластиной (2) и нижней пластиной (3), смежные структурированные пластины (4, 5) взаимодействуют друг с другом для образования каналов (10) для первичной текучей среды и каналов (11) для вторичной текучей среды между соседними структурированными пластинами (4, 5), при этом теплообменник (1) содержит по меньшей мере два набора структурированных пластин (14, 15).

Изобретение относится к области теплотехники и может быть использовано в теплообменниках с использованием кипения теплоносителя. Теплообменник, выполненный с возможностью осуществлять теплообмен за счет кипения жидкости при передаче тепла от источника тепла через теплопередающий элемент в эту жидкость, содержит на поверхности теплопередающего элемента, находящейся со стороны, приходящей в контакт с жидкостью, вызывающей ее кипение, первую теплопроводящую область и вторую теплопроводящую область, которые имеют вид чередующихся полос.

Изобретение относится к теплоэнергетике, конкретно к теплообменным аппаратам, системам охлаждения промышленных газотурбинных энергоустановок и авиационных двигателей, и позволяет повысить эффективность охлаждения теплонапряженных элементов, увеличить ресурс их работы при упрощении технологии изготовления и снижении затрат в процессе производства.

Материалы, компоненты, узлы и способы в соответствии с раскрытием направлены на изготовление и применение листов материала для обеспечения каналов для охлаждения посредством потока газа.

Настоящее изобретение относится к способу уменьшения скопления жидкости и замораживания в пластинчатом противоточном теплообменнике (100), содержащем пакет теплопроводящих пластин (102).

Предложены теплопередающая пластина (32) и пластинчатый теплообменник (26), содержащий такую теплопередающую пластину. Теплопередающая пластина (32) имеет первую длинную сторону (46) и вторую длинную сторону (48) и содержит распределительную область (64), переходную область (66) и теплопередающую область (54).

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплообменная пластина (1) образована металлической плоской пластиной, имеющей малые неровности, образованные на ее поверхности, и получена посредством штамповки, которая осуществляется в качестве последующей обработки, плоской пластины.

Теплообменная пластина для пластинчатого теплообменника и пластинчатый теплообменник, снабженный указанной теплообменной пластиной. Теплообменная пластина содержит: отверстие (11), применяемое для образования торцевого отверстия; множество выступов (12), расположенных вокруг по меньшей мере части отверстия (11) вдоль круговой линии вокруг отверстия (11), причем множество выступов (12) проходят в направлении одной стороны плоскости (15) пластины; промежуточные части (16), расположенные между по меньшей мере двумя смежными выступами (12), причем промежуточные части (16) расположены на одной стороне плоскости (15) пластины и на заданном расстоянии от плоскости (15) пластины.

Изобретение относится к пластинчатому теплообменнику со сложенными пластинами, имеющими углубления, образующие контактные поверхности между пластинами. Для получения оптимального баланса между прочностью и условиями потока углубления расположены в виде матричной структуры с расстоянием Х1 между центрами углублений в смежных рядах и с расстоянием Х2 между центрами углублений в смежных столбцах, при этом углубления имеют окружность С и С/Х1 находится в диапазоне от 1,03 до 2,3.

Изобретение относится к космической технике, а именно к устройствам теплообмена. Панель холодильника-излучателя содержит теплоизлучающую пластину из композиционного материала и металлические трубки для теплоносителя, размещенные между теплоизлучающей пластиной и накладками из композиционного материала.

Настоящее изобретение относится к способу уменьшения скопления жидкости и замораживания в пластинчатом противоточном теплообменнике (100), содержащем пакет теплопроводящих пластин (102).

Настоящее изобретение относится к способу уменьшения скопления жидкости и замораживания в пластинчатом противоточном теплообменнике (100), содержащем пакет теплопроводящих пластин (102).

Предложены теплопередающая пластина (32) и пластинчатый теплообменник (26), содержащий такую теплопередающую пластину. Теплопередающая пластина (32) имеет первую длинную сторону (46) и вторую длинную сторону (48) и содержит распределительную область (64), переходную область (66) и теплопередающую область (54).

Предложены теплопередающая пластина (32) и пластинчатый теплообменник (26), содержащий такую теплопередающую пластину. Теплопередающая пластина (32) имеет первую длинную сторону (46) и вторую длинную сторону (48) и содержит распределительную область (64), переходную область (66) и теплопередающую область (54).

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплообменная пластина (1) образована металлической плоской пластиной, имеющей малые неровности, образованные на ее поверхности, и получена посредством штамповки, которая осуществляется в качестве последующей обработки, плоской пластины.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Теплообменная пластина (1) образована металлической плоской пластиной, имеющей малые неровности, образованные на ее поверхности, и получена посредством штамповки, которая осуществляется в качестве последующей обработки, плоской пластины.

Изобретение предназначено для теплообмена и может быть использовано в теплообменных аппаратах. В теплообменных элементах внутреннее пространство организовано так, что пары штампованных профильных пластин, образующих каналы для прохода потока, снабжены на обращенных поверхностях конусными или сферическими выступами, и структурировано роликовой сваркой для удлинения пути прохождения продукта по внутреннему пространству, для чего выполняют чередующиеся продольные сварные швы, организующие многоходовое движение потока и образующие извилистый канал.

Изобретение относится к теплотехнике и может быть использовано в пластинчатых теплообменниках. В теплообменнике с прокладками, содержащем множество пластин, каждая из пластин теплообменника содержит множество углублений.

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников. Способ образования стенок с увеличенной поверхностью для выполнения определенного технологического процесса содержит этапы, на которых: обеспечивают длину материала, имеющего противоположные первоначальные поверхности, причем указанный материал имеет продольную осевую линию, размещенную по существу на середине расстояния между указанными поверхностями, причем каждая из указанных первоначальных поверхностей имеет плотность первоначальной поверхности; вдавливают вторичные рисунки, имеющие плотности поверхностей, в каждую из указанных первоначальных поверхностей для деформирования указанного материала; и вдавливают первичные рисунки, имеющие плотности поверхностей первичных рисунков, в каждую из таких деформированных поверхностей для дополнительного деформирования материала и для дополнительного увеличения плотностей поверхностей на каждой из указанных поверхностей.

Изобретение относится к области теплотехники и может быть использовано в теплообменниках. Роторный регенеративный теплообменник содержит элементы теплопереноса, содержащие V-образные канавки, которые обеспечивают расстояние между соседними элементами, и гребни (гофры), расположенные между V-образными канавками.
Наверх