Способ получения катализатора гидроочистки дизельных фракций и катализатор, полученный этим способом

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1. Влажность полученной смеси доводят до 50-60 масс.% и пептизируют азотной кислотой. Полученный замес перемешивают, вводят в него пластификатор и перемешивают. Отформованные экструзией гранулы провяливают, сушат и прокаливают. В результате получен катализатор, содержащий, масс.%: оксид молибдена 12,0-25,0, оксид кобальта или никеля 4,0-7,5, оксид алюминия 67,5-84,0. Технический результат от реализации заявленной группы изобретений заключается в повышении активности катализатора, обеспечивающего высокую степень обессеривания смесевых дизельных фракций, содержащих наряду с прямогонной дизельной фракцией до 25 об.% газойлей вторичных термических и каталитических процессов, до ультранизкого содержания серы менее 10,0 ppm. 2 н.п. ф-лы, 1 табл., 6 пр.

 

Изобретение относится к каталитической химии, в частности, к получению катализаторов гидроочистки нефтяного сырья, и может быть использовано в нефтеперерабатывающей промышленности.

Процесс гидроочистки дизельных фракций на эффективных катализаторах позволяет улучшить характеристики товарного дизельного топлива и вовлекать в переработку газойли вторичных термических и каталитических процессов с получением дизельного топлива, отвечающего по качеству стандарту ЕВРО 5.

В настоящее время в связи с углублением переработки нефти в процессы гидроочистки различных нефтяных фракций вовлекаются продукты вторичных процессов, как термических, так и каталитических. Гидроочистка смесевых дизельных фракций, содержащих трудноудаляемые сернистые соединения, непредельные и полициклические ароматические углеводороды, требует применения высокоэффективных катализаторов. Создание таких катализаторов является трудной и актуальной задачей.

Известен способ получения катализатора гидроочистки нефтяных фракций, который заключается в том, что катализатор готовят одностадийной пропиткой носителя пропиточным раствором, полученным растворением в воде или водном растворе аммиака парамолибдата аммония, соединений кобальта и бора в присутствии лимонной кислоты, с целью обеспечения содержания в растворе комплексных соединений. RU 2313392 С1, опубл. 27.12.2007.

К недостаткам данного способа получения катализатора следует отнести недостаточно высокую степень обессеривания дизельной фракции. Получаемый гидрогенизат содержит 25-50 ppm остаточной серы.

Известен способ получения катализатора гидроочистки дизельного топлива, который заключается в том, что сухие порошки оксидов никеля, молибдена и алюминия смешиваются в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий и помещают в центрифугу, в которой производят сплавление с последующим выщелачиванием атомов алюминия и получают катализатор гидроочистки с наноструктурированной поверхностью, созданной активными центрами оксидов молибдена и никеля. RU 2491123 С1, опубл. 27.08.2013.

К недостаткам данного способа следует отнести сложную многоступенчатую технологию его изготовления, включающую центрифугидрование смеси оксидов металлов, выгорание, сплавление, затем после выгрузки из центрифуги полученный сплав подвергают выщелачиванию, промывке и дальнейшему формованию и термообработке полученного катализатора.

Известен катализатор гидроочистки, содержащий компоненты металлов VIB (хром, молибден) и VIII (кобальт, никель) групп, фосфора и бора, а также органические добавки. Количество соединений металлов VIB группы колеблется от 18 до 28 мас. % Содержание соединений металлов VIII составляет от 2 до 8 мас. %. Количество соединений фосфора, используемых при синтезе данного катализатора, должно быть таковым, чтобы обеспечить содержание фосфора в катализаторе не меньше 1 масс %. Количество бора в катализаторе колеблется от 1 до 13 мас. %. Способ получения катализатора включает, по меньшей мере, совместную экструзию источника бора с носителем для формирования экструдата борсодержащего носителя, сушку, кальцинирование экструдата и пропитку кальцинированного экструдата раствором, содержащим источник фосфора, по меньшей мере один источник металла группы VIB и/или по меньшей мере один источник металла группы VIII. ЕА 020295 В1, опубл. 30.10.2014.

Недостатком данного катализатора является невысокая степень обессеривания сырьевых фракций в процессе гидроочистки на данном катализаторе.

Наиболее близким к предлагаемой группе изобретений по способу получения катализатора является способ приготовления катализатора для осуществления процесса гидроочистки, включающий осаждение гидроксида алюминия, введение в гидроксид алюминия солей молибдена (аммоний молибденовокислый) и кобальта (нитрат кобальта) в массу гидроксида алюминия, пептизированную азотной кислотой и повторную пептизацию полученной смеси одноосновной органической кислотой. RU 2189860, опубл. 27.09.2002.

К недостаткам данного способа можно отнести то, что на катализаторе, приготовленным указанным способом, степень обессеривания сырья не превышает 94,8% отн., что недостаточно для достижения содержания остаточной серы в гидрогенизате менее 10 ppm.

Наиболее близким к предлагаемой группе изобретений по составу катализатора является катализатор, содержащий масс %: оксид молибдена 10-14, оксид никеля или оксид кобальта 3-5, оксид цинка 0,2-2,, фтор и хлор 0,2-1,0 в сумме, оксид алюминия 78-86,6. Повышенная активность катализатора в процессе гидроочистки нефтяных фракций достигается за счет введения в состав катализатора модифицирующей добавки оксида цинка и элеиентов VIIA группы, предпочтительно фтора и хлора, взятых в определенном мольном соотношении. RU 2159672 С1, опубл. 27.11.2000/ К недостаткам данного катализатора можно отнести невысокую степень обессеривания сырья в процессе гидроочистки, которая не превышает 95,8% отн., что не позволяет получать дизельное топливо с содержанием остаточной серы мнее 10 ppm из сернистых нефтей.

Техническая задача изобретения, заключается в разработке способа получения катализатора гидроочистки дизельных фракций с повышенной активностью в целевых реакциях, протекающих при гидрообессеривании дизельных фракций и катализатора гидроочистки дизельных фракций.

Технический результат от реализации заявленной группы изобретений, заключается в повышении активности катализатора, обеспечивающего высокую степень обессеривания смесевых дизельных фракций, содержащих наряду с прямогонной дизельной фракцией до 25 об % газойлей вторичных термических и каталитических процессов, до ультранизкого содержания серы менее 10,0 ppm.

Технический результат достигается тем, что в способе получения катализатора гидроочистки дизельных фракций, содержащего оксид молибдена, оксид кобальта или никеля и оксид алюминия, согласно изобретению, гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1, доводят влажность полученной смеси до 50-60 масс %, пептизируют азотной кислотой, полученный замес перемешивают, вводят в него пластификатор и перемешивают, а отформованные экструзией гранулы провяливают, сушат и прокаливают с получением катализатора, содержащего, масс %: оксид молибдена 12,0-25,0, оксид кобальта или никеля 4,0-7,5, оксид алюминия 67,5-84,0.

В качестве порошка гидроксида алюминия AlOOH использован бемит или псевдобемит, полученный по промышленной технологии получения моногидроксида алюминия, а в качестве пластификатора используют триэтиленгликоль. Изобретение иллюстрируют следующие примеры.

Пример 1.

Пример иллюстрирует способ получения алюмокобальтмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид кобальта (СоО) - 4,5, оксид молибдена (МоО3) - 12,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

109,6 г гидроксида алюминия, 7,1 г кобальта (II) углекислого основного водного и 12,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 60,3 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 29,3 мл дистиллированной воды и 2,63 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 1,1 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Пример 2.

Пример иллюстрирует способ получения алюмокобальтмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид кобальта (СоО) - 6,3, оксид молибдена (МоО3) - 20,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

96,7 г гидроксида алюминия, 10,0 г кобальта (II) углекислого основного водного и 20,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 53,2 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 25,8 мл дистиллированной воды и 2,32 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 0,97 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Пример 3.

Пример иллюстрирует способ получения алюмокобальтмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид кобальта (СоО) - 6,85, оксид молибдена (МоО3) - 25,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

89,4 г гидроксида алюминия, 10,9 г кобальта (II) углекислого основного водного и 25,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 49,2 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 23,9 мл дистиллированной воды и 2,15 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 0,89 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Пример 4.

Пример иллюстрирует способ получения алюмоникельмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид никеля (NiO) - 4,5, оксид молибдена (MoO3) - 12,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

109,6 г гидроксида алюминия, 7,1 г никеля (II) углекислого основного водного и 12,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 60,3 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 29,3 мл дистиллированной воды и 2,63 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 1,1 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Пример 5.

Пример иллюстрирует способ получения алюмоникельмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид никеля (NiO) - 6,3, оксид молибдена (МоО3) - 20,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

96,7 г гидроксида алюминия, 10,0 г никеля (II) углекислого основного водного и 20,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 53,2 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 25,8 мл дистиллированной воды и 2,32 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 0,97 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Пример 6.

Пример иллюстрирует способ получения алюмоникельмолибденового катализатора на основе оксида алюминия. Для получения носителя используют гидроксид алюминия - бемит.

Образец катализатора состава, масс %: оксид никеля (NiO) - 6,85, оксид молибдена (МоО3) - 25,0, оксид алюминия (Al2O3) - остальное, готовят следующим способом.

89,4 г гидроксида алюминия, 10,9 г никеля (II) углекислого основного водного и 25,0 г оксида молибдена (VI) в виде сухих порошков помещают в месильную машину, перемешивают в течение 10 мин с переменой направления вращения, после чего увлажняют 49,2 мл дистиллированной воды и перемешивают в течение 15 мин с переменой направления вращения. Для пептизации готовят пептизирующий раствор, состоящий из 23,9 мл дистиллированной воды и 2,15 мл 65%-ой азотной кислоты. Полученный раствор приливают к замесу и проводят перемешивание в течение 20 мин с переменой направления вращения до получения однородной пасты. В полученную массу вводят пластификатор - триэтиленгликоль в количестве 0,89 мл, и перемешивают в течение 10 мин с переменой направления вращения.

Полученную массу формуют в цилиндрические гранулы методом экструзии без резки. Отформованный катализатор с длиной гранул 3,0-4,0 мм провяливают на воздухе при комнатных условиях в течение 12 ч.

Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч, после чего катализатор прокаливают при температуре 550°С в течение 4 ч.

Эффективность работы катализатора, полученного по заявленному способу, оценивалась в процессе гидроочистки смесевой дизельной фракции, содержащей в своем составе 75 об % прямогонной дизельной фракции, 15 об % газойля установки замедленного коксования, 10 об % газойля каталитического крекинга, с содержанием серы 1,13 масс % путем пропускания водородсодержащего газа и сырья с объемным соотношением водорода к сырью от 300:1 через неподвижный слой катализатора, загруженного в трубчатый реактор, с объемной скоростью 0,5 и 1,0 ч-1 в диапазоне температур 360-400°С при давлении 4,0 и 6,0 МПа по остаточному содержанию серы в стабильном гидрогенизате.

Перед проведением процесса гидроочистки катализатор сульфидировали диметилдисульфидом в токе водорода при температуре 300°С.

Показатели процесса гидроочистки дизельной фракции, проведенного с использованием образцов катализаторов, соответствующих изобретению, представлены в таблице.

Из данных таблицы следует, что предлагаемый катализатор для гидроочистки дизельной фракции характеризуется высокой активностью в реакциях гидрообессеривания в процессе гидроочистки фракций дизельного топлива.

1. Способ получения катализатора гидроочистки дизельных фракций, содержащего оксид молибдена, оксид кобальта или никеля и оксид алюминия, отличающийся тем, что гидроксид алюминия в форме бемита или псевдобемита смешивают с порошком оксида молибдена, кобальтом углекислым основным или никелем углекислым основным, взятыми в массовом соотношении от 1,7:1 до 2,3:1, доводят влажность полученной смеси до 50-60 масс.%, перемешивают, пептизируют азотной кислотой, вводят пластификатор, формуют экструзией, провяливают, просушивают и прокаливают.

2. Катализатор гидроочистки дизельных фракций, характеризующийся тем, что он получен способом по п. 1 и содержит, масс.%: оксид молибдена 12,0-25,0, оксид кобальта или никеля 4,0-7,5, оксид алюминия 67,5-84,0.



 

Похожие патенты:

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным слоем пакета катализаторов, состоящим из основного катализатора гидропереработки, в качестве которого используют алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор в сульфидной форме, и расположенных над ним защитных слоев в количестве 10-15% реакционного объема, включающих: слой А - инертный материал для удаления механических примесей, обладающий свободным объемом не менее 65%, слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений на основе высокопористого ячеистого материала, обладающий свободным объемом не менее 80%, размером отверстий не более 30 меш, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 3% масс., молибдена - не более 10% масс., слой В - сорбционно-каталитический материал для удаления мышьяка и кремния на основе мезопористого оксида кремния, обладающий удельной поверхностью не ниже 350 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 6% масс., молибдена - не более 14% масс., слой Г - катализатор деметаллизации на основе гамма-оксида алюминия, обладающий удельной поверхностью не ниже 150 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения кобальта, никеля и молибдена, при этом содержание кобальта составляет не более 4% масс., никеля - не более 4% масс., молибдена - не более 14% масс., при следующем соотношении защитных слоев в частях по объему - А:Б:В:Г - 0,2:0,6÷2,4:1,2÷1,6:0,2÷1,6.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что подложку из оксида алюминия пропитывают раствором, содержащим от 14% вес.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что вначале получают никельсодержащую подложку, сформованную экструзией смеси оксида алюминия и от 0,1 до 5 вес.% порошка никеля, с последующими сушкой и прокаливанием.

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена и основного карбоната никеля или кобальта в цилиндрические гранулы, просушивание и прокаливание с последующей пропиткой водным раствором тиомочевины с концентрацией 42-55 масс.% или водным раствором роданида аммония с концентрацией 42-55 масс.%, термообработку при температуре 250-320°С в токе водорода в течение 30-60 мин, при этом получают катализатор, содержащий, масс.%: сульфид никеля или сульфид кобальта 3,0-8,5, сульфид молибдена 8,9-22, оксид алюминия остальное.

Изобретение относится к каталитической композиции гидроочистки углеводородного сырья, способу изготовления такой каталитической композиции и ее использованию в способе каталитической гидроочистки углеводородного сырья.

Изобретение относится к способам гидроочистки дизельных топлив, основанных на использовании регенерированных катализаторов гидроочистки. Описан способ гидроочистки дизельного топлива при температуре 340-390°С, давлении 3-9 МПа, объемном расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-600 м3/м3 в присутствии регенерированного катализатора гидроочистки, имеющего объем пор 0,3-0,8 мл/г, удельную поверхность 150-280 м2/г, средний диаметр пор 6-15 нм, включающего в свой состав молибден, кобальт, фосфор, серу и носитель, при этом молибден, кобальт и фосфор содержатся в катализаторе в форме смеси комплексных соединений Со(C6H6O7), Н4[Мо4(C6H5O7)2O11], Н3[Со(ОН)6Mo6O18], Н6[P2Mo5O23], сера содержится в форме сульфат-аниона SO42-, фосфор содержится в форме фосфат-аниона РО43- в следующих концентрациях, мас.

Катализатор глубокого гидрообессеривания вакуумного газойля содержит, мас.%: оксид кобальта 6-8, оксид молибдена 18-24 и носитель, состоящий из оксида кремния 6-16 и оксида алюминия-остальное, в том числе: 20-60 мас.% оксида алюминия в виде бемита, 20-40 мас.% оксида алюминия, полученного предварительной обработкой гидроксида алюминия 1-5%-ным раствором азотной кислоты при температуре раствора 5-10 °С, просушенного распылением в токе горячего воздуха, и 20-40 мас.% оксида алюминия в виде мезопористого алюмосиликата.
Изобретение относится к способу регенерации использованного катализатора гидроочистки, содержащего, по меньшей мере, 8% вес. кокса и один или несколько неблагородных металлов VIII группы и/или VIb группы, включающему стадии: (i) удаление кокса с использованного катализатора гидроочистки; (ii) обработка катализатора, полученного на стадии (i), водным раствором глюконовой кислоты, содержащим от 2 до 60% вес.

Изобретение относится к способу обработки бензина, содержащего соединения серы и олефины, причем способ включает по меньшей мере следующие этапы: a) взаимодействие, в по меньшей мере одном реакторе, бензина, водорода и катализатора гидродесульфирования при температуре от 270 до 400°C, давлении от 0,5 до 5 МПа, объемной скорости от 0,5 до 20 ч-1 и отношении расхода водорода, выраженного в нормальных м3 в час, к расходу обрабатываемого сырья, выраженному в м3 в час в стандартных условиях, от 50 Нм3/м3 до 1000 Нм3/м3 для превращения по меньшей мере части соединений серы в H2S; b) этап удаления образованного H2S, присутствующего в потоке, отбираемом с этапа a), путем охлаждения смеси бензина и водорода, отделения водорода, обогащенного сероводородом, от жидкого бензина и отпарки бензина путем введения потока водорода для удаления остаточных следов сероводорода, растворенного в бензине; c) взаимодействие в реакторе обедненного потока H2S, отбираемого с этапа b), с катализатором, содержащим по меньшей мере один сульфид по меньшей мере одного переходного металла, выбранного из металла группы VIB, металла группы VIII и меди, по отдельности или в смеси, осажденного на пористую подложку, с целью осуществления реакции меркаптанов с олефинами бензина с образованием соединений серы типа тиоэфира, причем этап c) осуществляют при температуре от 30°C до 250°C, объемной скорости жидкости от 0,5 до 10 ч-1, давлении от 0,4 до 5 МПа и отношении H2/сырье от 0 до 10 Нм3 водорода на м3 сырья с получением на выходе этапа c) бензина, с меньшим количеством меркаптанов по сравнению с их количеством в потоке, отбираемом с этапа b).

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид фосфора 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас.

Изобретение относится к области экологии, а именно к катализаторам окисления сажи и способу их получения, так как выброс токсичных соединений из двигателей существенно угрожает экологии.
Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым.

Предложена композитная подложка катализатора гидрирования, содержащая полукоксовый порорасширяющий материал, молекулярное сито и отработанный катализатор каталитического крекинга.

Описан катализатор для получения α,β-ненасыщенной карбоновой кислоты путем газофазного окисления α,β-ненасыщенного альдегида, причем катализатор включает формованное изделие-носитель с нанесенной на него активной массой, отличающейся тем, что степень покрытия активной массой q, где, составляет самое большее 0,26 мг/мм2, причем Q - это доля активной массы катализатора в мас.%, a Sm - удельная геометрическая поверхность формованного изделия-носителя в мм2/мг, а активная масса включает мультиэлементный оксид общей формулы (II) где X4 означает один или несколько щелочных и/или щелочно-земельных металлов, X5 означает один или несколько элементов из группы Si, Al, Ti и Zr, а означает число в пределах от 2 до 4, b означает число в пределах от 0 до 3, с означает число в пределах от 0,5 до 3, е означает число в пределах от 0 до 2, f означает число в пределах от 0 до 40 и n означает стехиометрический коэффициент элемента кислорода, который определяется стехиометрическими коэффициентами отличных от кислорода элементов, а также их валентностью в (II).

Изобретение относится к способу получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания и газовых промышленных выбросов, согласно которому пористую основу покрывают каталитическим покровным слоем, причем в качестве пористой основы используют пористую керамическую заготовку, которую вначале прокаливают в вакуумной муфельной печи при температуре 630-632°С в течение 13-15 минут с последующим остыванием до 30°С, погружают в жидкость со взвешенными в ней мелкими частицами гидрата окиси алюминия в концентрации 7-9% с высокотемпературным связующим и удерживают в ней в течение 3 минут, а затем высушивают при температуре до 75°С, после чего прокаливают в течение 10-12 минут в муфельной печи при температуре 780-783°С с последующим остыванием до 30°С и помещают на 3 минуты в смесь в равных частях органических растворителей (мас.% бутиловый спирт - 20 ацетон - 10 сольвент - 33, бензин - 10 и изопропанол - 27), солей недрагоценных металлов (мас.%: вольфрама - 9, молибдена - 23, титана - 7 и аллюминия - 61) и взвешенных в ней смеси мелких частиц (мас.%: двуокиси титана - 50 и двуокиси бемита - 50) и далее извлекают из смеси и после удаления стекающего ее остатка высушивают в безвоздушной камере при температуре 32-36°С и производят термообработку для перевода солей металлов в оксиды, которую проводят при температуре 633-987°С в течение двух минут.

Изобретение относится к процессам каталитического крекинга тяжелых углеводородов с движущимся слоем катализатора и способу его приготовления. Описан гранулированный катализатор крекинга, включающий цеолит ReHY или HY, каолин, источники оксида алюминия и оксида кремния, при следующем содержании активного компонента: 5-30% масс.

Изобретение относится к способу приготовления катализаторов для среднетемпературной конверсии оксида углерода водяным паром, которые могут быть использованы в химической промышленности при получении азотоводородной смеси для синтеза аммиака.

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров.
Изобретение относится к способам получения катализаторов на основе активированных углей и каталитических добавок в виде водных растворов переходных металлов и может быть использовано в индивидуальных и коллективных устройствах защиты органов дыхания для удаления из отходящих газов токсичных химических веществ, преимущественно фосфина (РН3).

Настоящее изобретение относится к композитному катализатору, включающему углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы. Описан композитный катализатор, применяемый после активации в качестве катализатора Ренея, включающий углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы, в котором частицы сплава Ренея диспергированы в непрерывной фазе углерода и в котором углерод в качестве непрерывной фазы получен в результате карбонизации, по меньшей мере, одного способного к карбонизации органического вещества, которое представляет собой органический полимер, и сплав Ренея включает по меньшей мере один металл Ренея, выбранный из группы, состоящей из никеля, кобальта, меди и железа и по меньшей мере одного выщелачиваемого элемента, выбранного из группы, состоящей из алюминия, цинка и кремния.
Изобретение относится к катализатору гидрирования углеводородного сырья, содержащего полиненасыщенные и/или ароматические соединения, способу получения указанного катализатора и к способу гидрирования.

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1. Влажность полученной смеси доводят до 50-60 масс. и пептизируют азотной кислотой. Полученный замес перемешивают, вводят в него пластификатор и перемешивают. Отформованные экструзией гранулы провяливают, сушат и прокаливают. В результате получен катализатор, содержащий, масс.: оксид молибдена 12,0-25,0, оксид кобальта или никеля 4,0-7,5, оксид алюминия 67,5-84,0. Технический результат от реализации заявленной группы изобретений заключается в повышении активности катализатора, обеспечивающего высокую степень обессеривания смесевых дизельных фракций, содержащих наряду с прямогонной дизельной фракцией до 25 об. газойлей вторичных термических и каталитических процессов, до ультранизкого содержания серы менее 10,0 ppm. 2 н.п. ф-лы, 1 табл., 6 пр.

Наверх