Тетра(бензотиофен-2-ил)тетрацианопорфиразин как мультимодальный агент фотодинамической терапии

Изобретение относится к тетра(бензотиофен-2-ил)тетрацианопорфиразину, имеющему формулу:

в которой R=C8H5S (бензотиофен-2-ил), как мультимодальному агенту фотодинамической терапии злокачественных новообразований, а именно, как фотосенсибилизатору и одновременно оптическому сенсору внутриклеточной вязкости. Технический результат: получено новое соединение с высокой фотодинамической активностью и высокой вязкостной чувствительностью параметров его флуоресценции, необходимой для использования его в качестве потенциального неинвазивного оптического сенсора внутриклеточной вязкости. 4 ил., 3 табл., 3 пр.

 

Предлагаемая группа изобретений относится к области биомедицины, к мультимодальным противораковым препаратам для персонализированной медицины, касается в частности тетра(бензотиофен-2-ил)тетрацианоорфиразина (pzI) и его применения в качестве мультимодального агента фотодинамической терапии злокачественных новообразований, а именно в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной вязкости.

Флуоресцентные тетрапиррольные макроциклы, к которым относится заявляемое соединение, занимают центральное место в современной биоорганической химии, поскольку эти красители обладают свойством вначале избирательно накапливаться в ткани опухоли, а затем под действием света с подходящей длиной волны продуцировать активные формы кислорода, в частности, синглетный кислород, которые вызывают гибель клеток. Эта концепция лежит в основе фотодинамической терапии (ФДТ) онкологических заболеваний.

К настоящему времени описан обширный ряд тетрапиррольных фотосенсибилизаторов (ФС) для фотодинамической терапии (ФДТ) на основе хлоринов, порфиринов, фталоцианинов и некоторых других тетрапирролов. В последнее время показано, что порфиразины также перспективны в качестве агентов ФДТ, так как хорошо накапливаются в клетках и обладают высокой фотоцитотоксичностью [Е.R. Trivedi, A.S. Harney, М.В. Olive, I. Podgorski, K. Moin, В. F. Sloane, A. G.M. Barrett, Т.J. Meade, and В.M. Hoffman. Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation // PNAS. - 2010. - V. 107. - №4. - Р 1284-1288].

Известно, что в процессе фотоиндуцированной гибели клетки [M. Kuimova, S. Butchway, A. Parker, H. Anderson, P. Ogiby Nature Chemistry, 1, 2009, 69-73] наблюдается значительное увеличение внутриклеточной вязкости. Вязкость является важным параметром, определяющим скорость диффузии и, следовательно, скорость бимолекулярных реакций, протекающих в живой клетке. Изменение локальной вязкости в биологических системах может привести к серьезным дисфункциям в поведении живых клеток и даже их смерти. Таким образом, разработка препаратов, обладающих свойствами высокочувствительных неинвазивных сенсоров внутриклеточной вязкости, является актуальной проблемой. Для агента ФДТ наличие таких свойств означает важную дополнительную модальность, открывающую новый персонализированный терапевтический подход к лечению онкологических заболеваний. Такой подход позволяет осуществлять мониторинг функционального состояния клеток опухоли по изменению внутриклеточной вязкости в реальном времени в процессе фотодинамического воздействия [Izquierdo М.А., Lermontova S.A., Grigoryev I.S., Shilyagina N.Y., Balalaeva I.V., Klapshina L.G., Kuimova M.K. J. Mater. Chem. (B). 2015, 3. 1089-1102].

Известно, что для некоторых флуоресцентных красителей наблюдается различная степень свободы внутримолекулярного движения фрагментов светоизлучающей молекулы в зависимости от вязкости окружающей среды [М.A. Haidekker, Е.A. Theodorakis. J. of Biol. Eng. - 2010 - V. 4. - P. 1-14.; G. Hoffmann // J. Phys Chem. - 1971. - V. 75. - Р. 63-76].

Высоковязкие среды затрудняют внутримолекулярное движение (вращение или скручивание вокруг отдельных химических связей) и связанную с этим диссипацию энергии возбужденного состояния. Это приводит к сильному возрастанию интенсивности флуоресценции. Поскольку зависимость параметров флуоресценции (квантового выхода и времени жизни) от вязкости среды может быть описана простыми математическими уравнениями (1, 2), такие соединения могут быть использованы в качестве зондов локальной вязкости.

где φ - квантовый выход, η - вязкость, z и α - константы, kr - константа скорости излучательного перехода.

Такие красители обозначаются в научной литературе термином «флуоресцентные молекулярные роторы» [ G. Hoffmann. J. Phys Chem. 1971. V. 75. Р. 63-76]. Установлено, что значение α, определяющее тангенс угла наклона прямых зависимости квантового выхода от локальной вязкости в логарифмическом выражении для красителей типа молекулярных роторов меняется в интервале 0.3-0.6 [Kuimova, М.K., Chimia, 2012, vol. 66, p. 159.]

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является порфиразин, а именно тетра(4-фторфенил)тетрацианопорфиразин (pzII), принятый за ближайший аналог (прототип).

Тетра(4-фторфенил)тетрацианопорфиразин (pzII) по прототипу является не только сенсибилизатором фотодинамического воздействия на раковые клетки, но и высокочувствительным оптическим сенсором внутриклеточной вязкости, позволяющим проводить ее количественную оценку в различные моменты процесса фотодинамической терапии. Возможность осуществления контроля функционального состояния опухолевой ткани в режиме реального времени открывает новые возможности для персонализированной противораковой медицины.

Однако, прототип не лишен недостатков. В частности, для него существует проблема повышения фотоцитотоксичности и понижения темновой цитотоксичности. Этим недостатком обусловлено низкое значение потенциального терапевтического индекса данного препарата для ФДТ, который показывает широту безопасного использования лекарственного средства и представляет собой отношение токсичной дозы в темновых условиях к эффективной лечебной дозе при облучении.

В задачу изобретения положено создание тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) как мультимодального агента фотодинамической терапии злокачественных новообразований, а именно в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной вязкости.

Критерием успешности достижения поставленной цели явилось улучшение ниже перечисленных характеристик полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) по сравнению с прототипом:

- существенное понижение выживаемости клеточных культур, инкубированных в присутствии тетра(арил)тетрацианопорфиразина, при облучении светом (уменьшение ингибирующей концентрации тетра(арил)тетрацианопорфиразина (IC50(light));

- возрастание отношения IC50(dark)/IC50(light), характеризующего потенциальный терапевтический индекс препарата для ФДТ, который показывает широту безопасного использования лекарственного средства и представляет собой отношение токсичной дозы в темновых условиях к эффективной лечебной дозе при облучении;

- заметный сдвиг максимума поглощения в длинноволновую область.

Техническим результатом от использования изобретения является суммарное повышение фотодинамической активности макроцикла при сохранении высокой вязкостной чувствительности параметров флуоресценции, необходимой для использования их в качестве потенциального неинвазивного оптического сенсора внутриклеточной вязкости.

Поставленная задача была достигнута тем, что в периферийное обрамление макроцикла были введены бензотиофеновые группы.

На фиг. 1 представлена общая формула тетра(4-фторфенил)тетрацианопорфиразина (pzII) по прототипу и полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI), где R - заместитель, R=C8H5S (I, бензотиофен-2-ил),

На фиг. 2 представлена схема синтеза тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI)I в виде свободного основания.

На фиг. 3 представлены график зависимости квантового выхода флуоресценции тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) от вязкости растворителя (спиртово-глицериновые смеси).

На фиг. 4 представлен график зависимости жизнеспособности клеток А431 от концентрации в среде тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI)

В таблице 1 представлены результаты анализа полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI).

В таблице 2 представлены характеристики тетра(4-фторфенил)тетрацианопорфиразина (pzII) и полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) как потенциальных фотосенсибилизаторов ФДТ.

В таблице 3 представлены значения коэффициента α в уравнении Ферстера-Хоффмана, характеризующего чувствительность квантового выхода красной флуоресценции, тетра(4-фторфенил)тетрацианопорфиразина (pzII) и полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) от вязкости среды.

Полученный тетра(бензотиофен-2-ил)тетрацианопорфиразин (pzI) имеет формулу:

где R - заместитель, R=C8H5S (бензотиофен-2-ил)

Пример 1

Синтез предлагаемого тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) осуществляют следующим образом.

В качестве структурных единиц для темплатной сборки тетра(бензотиофен-2-ил)тетрацианопорфиразина используют бензотиофен-2-ил-1,1,2-трицианоэтилены, которые, в свою очередь, синтезируют в три стадии из альдегида (фиг. 2 стадия а-с). К бензотиофен-2-карбальдегиду, растворенного в этиловом спирте (100 мл), добавляли малонодинитрил в мольном соотношении 1:1 и 2 капли пиперидина (фиг. 2 стадия а,). Реакционную смесь перемешивали в течение 24 часов при комнатной температуре. Выпавший осадок отфильтровывали, промывали водой (4×80 мл) и высушивали при комнатной температуре и пониженном давлении. Полученный 2-(бензотиофен-2-ил)-1,1-дицианэтилен растворяли в этиловом спирте (150 мл), добавляли KCN в двукратном мольном избытке, предварительно растворенного в 80 мл воды (фиг. 2 стадия b,). Реакционную смесь перемешивали, охлаждая колбу ледяной баней. В реакционную смесь добавили 240 мл воды и перемешивали в течение 45 мин. при комнатной температуре. Далее добавили 6 мл 37% HCl. После этого реакционную смесь охлаждали. Выпавший осадок отфильтровывали, тщательно промывали водой и высушивали при комнатной температуре и пониженном давлении. К полученному 2-(бензотиофен-2-ил)-1,1,2-трицианэтану, растворенному в диэтиловом эфире (100 мл) добавляли N-хлорсукцинимид в мольном соотношении 1:1,5 (фиг. 2 стадия с,). Через час добавляли воду (150 мл), выпадает осадок. Растворитель удаляли при пониженном давлении. Продукт возгоняли при пониженном давлении.

Тетра(бензотиофен-2-ил)тетрацианопорфиразинат иттербия (фиг. 2 стадия d,). В вакууме растворяли 2-(бензотиофен-2-ил)-1,1,2-трицианоэтилен (ArTCE) в предварительно дегазированном THF. Далее небольшими порциями добавляли полученный раствор к бис-инденильному π-комплексу иттербия(II) [(С9Н7)2Yb(ТГФ)2)] в THF (ArTCE:(C9H7)2Yb(ТГФ)2) в мольном соотношении 1:5). Через 1 сут раствор фильтровали в вакууме. Для удаления из смеси не вступившего в реакцию соединения и его комплекса полученный раствор промывали предварительно дегазированным толуолом до исчезновения окраски. Выделенный продукт кипятили в толуоле на воздухе в течение 24 ч. Нерастворившийся осадок отделяли и сушили при пониженном давлении.

Тетра(бензотиофен-2-ил)тетрацианопорфиразинат иттербия растворяют в 2 мл трифторуксусной кислоте и перемешивали при комнатной температуре в течение 30 мин. для удаления металла (фиг. 2 стадия е,). Далее добавили воды ~30 мл, наблюдали выпадение темно-синего осадка, отцентрифугировали, тщательно промыли водой до нейтральной среды. Очистку продукта проводят с помощью колоночной хроматографии (силикагель 60, 40-60 μm, элюент THF).

Спектральные характеристики полученного соединения приведены в таблице 1.

ИК спектры полученных соединений в виде суспензий в вазелиновом масле регистрировали на ИК Фурье-спектрометре ФСМ 1201. Спектры поглощения в УФ и видимой области снимали на спектрометре Perkin Elmer Lambda 25. Спектры ЯМР 1Н записывали на приборе Bruker Avance II+[400 (1Н), 100 (13С), 375 МГц (19F)] при 25°С. Исследования флуоресценции в стационарном режиме были проведены на спектрометре Perkin Elmer LS 55 в диапазоне длин волн 300-800 нм. Масс-спектры (MALDI TOF) снимали на масс-спектрометре Bruker Micro flex LT.

Пример 2.

Фотоиндуцированная и темновая цитотоксичности тетра(бензотиофен-2-ил)тетрацианопорфиразина в системе in vitro.

Полученный тетра(бензотиофен-2-ил)тетрацианопорфиразин (pzI) демонстрирует отчетливо выраженную фотоцитотоксичность в отношении опухолевых клеток А431 на длине волны облучения 635 нм.

Концентрации раствора pzI варьировались от 0,1 до 100 мкМ. Время инкубации до светового воздействия составляло 4 часа. Исследование световой активности проводилось с использованием светодиодного излучателя для получения равномерного светового потока в стандартных 96-луночных планшетах. Доза облучения составляла 20 Дж/см2 при плотности мощности 20 мВт/см2 [Н.Ю. Шилягина, В.И. Плеханов, И.В. Шкунов, П.А. Шилягин, Л.В. Дубасова, А.А. Брилкина, Е.А. Соколова, И.В. Турчин, И.В. Балалаева. Современные технологии медицине. 2014, Т. 6, №2, С. 15-24].

Жизнеспособность клеточной культуры оценивали через 24 часа после облучения с помощью микротитрационного теста для анализа метаболической активности (МТТ-тест), позволяющего определить ингибирующую концентрацию IC50, т.е. концентрацию соединения, вызывающую снижение роста культуры клеток на 50% (или их гибель). Величины IC50 приведены в таблице 2.

Как показывают данные исследования фотоиндуцированной и темновой цитоксичности (таблица 2) полученное порфиразиновое свободное основание является потенциальными сенсибилизаторами ФДТ, поскольку фотоцитоксичность существенно превышает цитоксичность в отсутствие облучения светом. При этом, как видно из данных таблицы 2, полученный порфиразин показал улучшение свойств нового соединения как потенциальных фотосенсибилизаторов процесса ФДТ по сравнению с выбранным прототипом (тетра(4-фторфенил)тетрацианопорфиразином (pzII), по крайней мере, по одному критерию из указанных выше.

Оценка эффективности фотодинамического воздействия полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина (pzI) на раковые клетки показала более высокую, чем для прототипа, фотоцитотоксичность. С этим связан наблюдаемый для порфиразина pzI более высокий (4.8 раз больший, чем для pz2) терапевтический индекс.

Кроме того, для тетра(бензотиофен-2-ил)тетрацианопорфиразина pzI наблюдается значительный сдвиг максимума полосы поглощения в длинноволновую область спектра (609 нм), использование которой обеспечивает более высокую прозрачность биоткани, что, в свою очередь, повышает эффективность фотодинамического воздействия.

Таким образом, полученный тетра(бензотиофен-2-ил)тетрацианопорфиразин (pzI) демонстрирует существенное увеличение фотоцитотоксичности, а, следовательно, повышение эффективности в качестве потенциального фотосенсибилизатора ФДТ по сравнению с тетра(4-фторфенил)тетрацианопорфиразином (pzII)

Пример 3.

Тетра(бензотиофен-2-ил)тетрацианопорфиразин pzI как флуоресцентный молекулярный ротор: зависимости квантового выхода красной флуоресценции от вязкости среды в этанольно-глицериновых смесях.

Тетра(бензотиофен-2-ил)тетрацианопорфиразин (pzI) растворяли в 3 мл смеси этанол/глицерин (концентрация порфиразина 1*10-5 моль/л). Состав смесей с известной вязкостью [Abdullah S. Alkindi, Yahya М. Al-Wahaibi, and Ann H. Muggeridge. Journal of Chemical & Engineering Data, Vol. 53, No. 12, 2008] варьировался от 40 до 100% глицерина. Интенсивность красной флуоресценции измеряли с помощью спектрофлуориметра (Perkin Elmer LS 55) при температуре 23°С.

Квантовый выход определяли относительно перхлората крезила фиолетового.

По полученным данным в логарифмических координатах для полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина pzI строили зависимость квантового выхода от вязкости среды. Данные измерений представлены на рисунке 3 и в таблице 3.

Характер зависимости квантового выхода от вязкости среды для полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина pzI полностью соответствует уравнению (1) Ферстера-Хоффмана, а значения α в этом уравнении находятся в интервале 0.46-0.66, что позволяет отнести полученный краситель к ряду флуоресцентных молекулярных роторов, т.е. потенциальных сенсоров локальной вязкости.

Таким образом, как показано в Примерах 2 и 3, предлагаемый в данной заявке фотосенсибилизатор ФДТ на основе полученного тетра(бензотиофен-2-ил)тетрацианопорфиразина pzI, сохраняя характерный для прототипа высокий потенциал использования в качестве чувствительного сенсора внутриклеточной вязкости, является значительно более перспективным агентом ФДТ, поскольку (1) его спектр поглощения сдвинут область большей оптической прозрачности биоткани; (2) он обладает значительно более высокой фотоцитоксичностью и (3) потенциальным терапевтическим индексом (в 4.8 раз), чем прототип.

Тетра(бензотиофен-2-ил)тетрацианопорфиразин, имеющий формулу:

где R=C8H5S (бензотиофен-2-ил),

как мультимодальный агент фотодинамической терапии злокачественных новообразований, а именно как фотосенсибилизатор и одновременно оптический сенсор внутриклеточной вязкости.



 

Похожие патенты:

Изобретение относится к химической промышленности, конкретно к способу получения 4-(2,4,5-трихлорфенокси)фталонитрила указанной ниже формулы. Способ характеризуется тем, что в ДМФА растворяют 4-нитрофталонитрил и 2,4,5-трихлорфенол, к полученному раствору прибавляют раствор К2СО3 в воде и перемешивают при 100°С в течение 3 ч.

Изобретение относится к применению 4-(3,4-дибромтиофенкарбонил)-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана в качестве противосудорожного средства.

Изобретение относится к водорастворимому производному хлорофилла а, модифицированному фрагментом миристиновой кислоты. Технический результат: получено новое биологически активное соединение хлоринового ряда, обладающее антибактериальным действием, которое может быть использовано в качестве потенциального фотосенсибилизатора (ФС) для антибактериальной ФДТ.

Изобретение относится к химической промышленности, а именно к получению новых биологически активных соединений хлоринового ряда, а именно к производным хлорофилла α, модифицированным одним или двумя фрагментами миристиновой кислоты.

Настоящее изобретение относится к фотосенсибилизатору для фотодинамической терапии рака предстательной железы. Фотосенсибилизатор имеет структурную формулу (1) ,где в качестве R1 может выступать водород (Н), натрий (Na), калий (К), С1-С2 - алкил, в качестве R2 может выступать соединение общей формулы СхН2х, где х=4÷17, в качестве R3 может выступать водород (Н), натрий (Na) или калий (К).

Изобретение относится к тетра-4-[4-(2,4,5-трихлорфенокси)]фталоцианину меди общей формулы: .Тетра-4-[4-(2,4,5-трихлорфенокси)]фталоцианин меди обладает красящей способностью по отношению к полистиролу, вискозе и капрону.

Изобретение относится к области биомедицины, к мультимодальным противораковым препаратам для персонализированной медицины, в частности к цианопорфиразиновому свободному основанию и его применению в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной вязкости.

Изобретение относится к водорастворимой лекарственной форме фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы: представляющей собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества: коллифор ELP - 80 мг±10%; D(-)-маннит - 200 мг ± 10%; лимонная кислота - 0,5 мг ± 10%.

Предлагаемое изобретение относится к области органической химии, а именно к области химии производных полинитросоединений, конкретно к высокоэнергоемким 4(10)-(2-фтор-2,2-динитроэтил)полинитрогексаазаизовюрцитанам общей формулы, приведенной в формуле изобретения, и к способу их получения, заключающемуся в том, что соответствующие 4(10)-(2,2,2-тринитроэтильные)полинитрогексаазаизовюрцитаны общей формулы, приведенной в формуле изобретения, подвергают взаимодействию с иодидом калия в среде низшего алифатического спирта и образующиеся при этом соответствующие калиевые соли 4(10)-(2,2-динитроэтил)полинитрогексаазаизовюрцитанов обрабатывают фторирующим агентом в среде инертного растворителя.

Изобретение относится к соединениям формулы (I) и их фармацевтически приемлемым солям и стереоизомерам, которые являются ингибиторами IRAK. В формуле (I) R1 и R3 каждый независимо друг от друга означают Н, (CH2)pCON(R5)2, OA, Hal, СООН, СООА, (CH2)pNHCOA, (CH2)PHet1, (CH2)pNR2R5 или ОН; R2 означает Н или линейный или разветвленный алкил с 1, 2 или 3 атомами углерода; R4 означает Н или А; R5 означает Н или линейный или разветвленный алкил с 1, 2 или 3 атомами углерода; Z отсутствует или означает Ar-диил или Het-диил; L означает (СН2)n, где одна или две группы СН2 могут быть заменены посредством О и/или группы СН=СН и/или где один или два Н атома могут быть заменены посредством OR2 или NR2R5; Ar-диил означает 1,2-, 1,3- или 1,4-фенилен, необязательно замещенный посредством от 1 до 5 групп, независимо выбранных из Hal, ОН, О-A, Het2 и/или А; Het-диил означает ненасыщенный, насыщенный или ароматический 5- или 6-членный гетероцикл, имеющий от 1 до 2 атомов N, О и/или S, который может быть незамещенным или моно-, ди- или тризамещенным посредством О-А и/или А; А означает неразветвленный или разветвленный алкил, имеющий от 1 до 10 атомов углерода, в котором одна или две несмежных СН2 группы могут быть заменены посредством О; Het1 означает морфолинил; Het2 означает морфолинил; Hal означает F, Cl, Br, I; n означает 1, 2, 3, 4, 5 или 6; р означает 0, 1 или 2.

Изобретение относится к медицине, а именно к стоматологии и дерматологии, и может быть использовано для лечения красного плоского лишая слизистой оболочки рта. Для этого вводят раствор фотодитазина, приготовленного из расчета 1,4 мг/кг массы тела пациента и растворенного в 200 мл 0,9% раствора натрия хлорида, который вводится внутривенным капельным путем в течение 30 минут в затемненном помещении, затем через 2 часа после введения фотосенсибилизатора проводят сеанс лазерного облучения патологически измененных тканей слизистой оболочки рта лазерным медицинским аппаратом с длиной волны 661-668 нм, мощностью 350-400 мВт в течение 10-15 минут, при этом курс составляет 2-3 процедуры с интервалом от 4 до 7 дней.

Изобретение относится к медицине. Описан ультраволокнистый биополимерный материал с бактерицидным эффектом на основе полигидроксибутирата, полилактида или их смесей с комплексами марганца(III) с тетрафенилпорфирином в количестве 1-5 мас.%, полученный методом электростатического формования.

Изобретение относится к водорастворимому производному хлорофилла а, модифицированному фрагментом миристиновой кислоты. Технический результат: получено новое биологически активное соединение хлоринового ряда, обладающее антибактериальным действием, которое может быть использовано в качестве потенциального фотосенсибилизатора (ФС) для антибактериальной ФДТ.
Изобретение относится к химико-фармацевтической промышленности и представляет собой лекарственное средство для лечения рака кожи методом фотодинамической терапии, характеризующееся тем, что оно представляет собой композицию в форме мази, содержащей в качестве фотосенсибилизатора тетраметиловый эфир копропорфирина, а в качестве вспомогательных компонентов диметилсульфоксид, моноглицериды, касторовое масло, полиэтиленоксид, ланолин и эмульгатор.

Изобретение относится к микробиологии, фармацевтике и медицине, а именно к фотосенсибилизаторам для фотодинамической инактивации бактерий. Синтетические катионные бактериохлорины общей формулы: где R=СН2СН2Br, или С7Н15, или CH2CH2N+C5H5Br-,в качестве фотосенсибилизаторов для фотодинамической инактивации бактерий, в том числе в биопленках.

Настоящее изобретение относится к фотосенсибилизатору для фотодинамической терапии рака предстательной железы. Фотосенсибилизатор имеет структурную формулу (1) ,где в качестве R1 может выступать водород (Н), натрий (Na), калий (К), С1-С2 - алкил, в качестве R2 может выступать соединение общей формулы СхН2х, где х=4÷17, в качестве R3 может выступать водород (Н), натрий (Na) или калий (К).

Изобретение относится к области биомедицины, к мультимодальным противораковым препаратам для персонализированной медицины, в частности к цианопорфиразиновому свободному основанию и его применению в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной вязкости.

Изобретение относится к водорастворимой лекарственной форме фотосенсибилизатора ближней ИК области спектра для фотодинамической терапии мезо-тетра(3-пиридил)бактериохлорина (λmax = 747 нм) структурной формулы: представляющей собой лиофилизат для приготовления раствора для инфузий, содержащий неиногенное поверхностно-активное вещество коллифор ELP, маннит и лимонную кислоту при следующем оптимальном содержании вспомогательных компонентов в расчете на 1 мг действующего вещества: коллифор ELP - 80 мг±10%; D(-)-маннит - 200 мг ± 10%; лимонная кислота - 0,5 мг ± 10%.

Настоящее изобретение относится к медицине, в частности к фармацевтической композиции и способу ее получения. Заявленную фармацевтическую композицию получают путем смешения Твина-80 и воды с получением водного раствора Твина-80, одновременного растворения гидроксипропил-бета-циклодекстрина и метилового эфира 133-N-(N-метилникотинил) бактериопурпуринимида при равномерном перемешивании и нагревании до температуры 60°С с получением водного раствора Твина-80, гидроксипропил-бета-цикло декстрина и метилового эфира 133-N-(N-метилникотинил) бактериопурпуринимида, фильтрации водного раствора Твина-80, гидроксипропил-бета-цикло декстрина и метилового эфира 133-N-(N-метилникотинил)бактериопурпуринимида с получением водного раствора заявленной фармацевтической композиции, высушивания водного раствора заявленной фармацевтической композиции с получением заявленной фармацевтической композиции.

Группа изобретений относится к области медицины и фармацевтики, а именно к средству для фотодинамической терапии, которое включает: 13(1)-N-{2-[N-(клозо-монокарбадодекаборан-1-ил)-метил]аминоэтил}амид-15(2),17(3)-диметилового эфир хлорина е6 – 0,047 мас.%, фосфатидилхолин – 7,808 мас.%, холестерин – 1,401 мас.%, DSPE-PEG-2000 – 0,129 мас.%, сахарозу – 11,4 мас.%, DSPE-PEG(5000) Folate – 0,59 мас.%, деионизированную воду до 100 мас.% с допустимым отклонением от указанных значений на ±5%; а также к лиофильно высушенному порошку, полученному из указанного средства.

Изобретение относится к тетратетрацианопорфиразину, имеющему формулу: в которой RC8H5S, как мультимодальному агенту фотодинамической терапии злокачественных новообразований, а именно, как фотосенсибилизатору и одновременно оптическому сенсору внутриклеточной вязкости. Технический результат: получено новое соединение с высокой фотодинамической активностью и высокой вязкостной чувствительностью параметров его флуоресценции, необходимой для использования его в качестве потенциального неинвазивного оптического сенсора внутриклеточной вязкости. 4 ил., 3 табл., 3 пр.

Наверх