Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора согласно изобретению используют операцию предварительной обработки фосфорсодержащего ионита раствором сернистой кислоты H2SO3 или сульфита натрия Na2SO3. Это приводит к более эффективной последующей переработке растворов десорбции с получением более чистых по скандию концентратов и упрощению дальнейшего получения оксида скандия. Техническим результатом заявляемого изобретения является получение более чистого концентрата скандия. 1 з.п. ф-лы, 2 табл., 2 пр.

 

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания.

Известен способ переработки скандийсодержащих растворов (см. Сорбция и отделение гидролизованных ионов скандия от некоторых сопутствующих ионов металлов. Журнал прикладной химии, 1976, т. 45, С. 1191). Известный способ заключается в следующем. Переработку скандийсодержащих растворов осуществляют сорбцией карбоксильными катионитами. Исходный раствор обрабатывают щелочным реагентом до рН 3,0-4,5 и направляют на ионообменное извлечение. После сорбции иониты в колонке промывают 0,5-2,0 н. раствором хлорида, перхлората или сульфата натрия (аммония). Десорбируют скандий 0,3-3,0 н. раствором азотной, соляной, фосфорной или азотной кислоты.

К причинам, препятствующим достижению указанного ниже технического результата при использовании данного известного способа, относится то, что согласно известному способу необходимо предварительно нейтрализовать исходные растворы до рН 3,0-4,5, что усложняет технологию, приводит к дополнительному расходу реагентов. С другой стороны, нейтрализованные растворы являются очень неустойчивыми и быстро гидролизуются, в растворе появляется осадок, который адсорбирует значительное количество скандия при наличии в исходном растворе значительных количеств титана. Это приводит к потере более 50% скандия.

Известен способ извлечения скандия из растворов переработки техногенного сырья (А.с. 1609166 СССР. Способ извлечения скандия из растворов от переработки отходов производства. Опубл. 10.05.2000, БИПМ 2000, N 13. С. 395). Известный способ заключается в сорбции скандия из растворов от переработки различных отходов производства фосфорсодержащими ионитами с последующей промывкой ионита, десорбцией скандия карбонатсодержащим раствором, осаждением из карбонатного элюата скандийсодержащих малорастворимых соединений путем введения фторида алюминия в количестве 50-100 г на 1 г скандия при 70-90°С и выдержкой образующейся суспензии в течение 1,5-3 часа.

К причинам, препятствующим достижению указанного ниже технического результата при использовании данного известного способа, относится большой расход реагентов для извлечения скандия из карбонатного элюата, неудовлетворительная избирательность извлечения скандия в осадок (что связано с соосаждением металлов примесей) и большой объем перерабатываемых растворов.

Из известных аналогов наиболее близким к заявленному изобретению по совокупности признаков и назначению является известный способ извлечения скандия из растворов переработки техногенного сырья - полиметаллических отходов производства (Цветная металлургия, 1994, N 8. С.22-25; Цветные металлы, 1999, N 1. С. 60-65) - принят за прототип.

Способ, по прототипу, включает сорбцию скандия из растворов фосфорсодержащим ионитом, промывку фосфорсодержащего ионита раствором серной кислоты с концентрацией 100 г/дм3, десорбцию скандия раствором карбоната натрия с концентрацией 150 г/дм3, с получением десорбированного ионита, который направляют на повторную сорбцию скандия и раствора десорбции который доводят раствором кислоты до рН=1-2, что бы разрушить карбонатные комплексы скандия, с последующим осаждением из него концентрата скандия путем его обработки раствором гидроксида натрия или аммиака до рН=5-6 и выдержке при температуре 20-40°с в течении 1-2 часов.

К недостаткам способа следует отнести высокую емкость по железу (III) используемого фосфорсодержащего ионита при переработке скандийсодержащих растворов и в связи с этим низкую степень очистки скандия от железа (III), что делает дальнейший процесс получения оксида скандия малорентабельным.

В основу изобретения положена задача, по созданию высокорентабельного технологического процесса извлечения скандия из продуктивных урановых растворов, образующихся при добыче урана методом подземного выщелачивания.

При этом техническим результатом заявляемого изобретения является получение более чистого концентрата скандия.

Заявляемый технический результат достигается тем, что способ извлечения скандия, согласно изобретению, включает сорбцию скандия на фосфорсодержащем ионите, промывку насыщенного фосфорсодержащего ионита, десорбцию скандия из насыщенного фосфорсодержащего ионита раствором карбоната натрия, с получением десорбированного ионита, который направляют на повторную сорбцию скандия и раствора десорбции который предварительно подкисляют с последующим осаждением концентрата скандия путем его обработки гидроксидом натрия или аммиаком, отличающийся тем, что перед промывкой проводят восстановление железа (III) до железа (II) в фазе насыщенного ионита восстановителем - серистой кислотой (H2SO3) или сульфитом натрия (Na2SO3).

Введение предварительной операции восстановление железа (III) до железа (II) в фазе насыщенного ионита восстановителем, перед промывкой ионита, позволяет отделить скандий от железа (III) за счет перевода его в форму железа (II), т.к. известно, что фосфорсодержащие группы ионитов образуют очень прочные комплексные соединения с ионами железа (III), что осложняет процесс их отделения от скандия. Приемлемого отделения скандия от железа (III) не удается добиться даже при использовании высококонцентрированных растворов кислот. С другой стороны, фосфорсодержащие иониты сорбируют железо (II) не за счет образования комплексного соединения, а за счет ионного обмена с протонами фосфорнокислой группы, что позволяет десорбировать железо (II) из фазы фосфорсодержащего ионита относительно слабыми растворами минеральных кислот. Таким образом, проведение операции восстановления позволяет перевести в фазе фосфорсодержащего ионита железо (III) в железо (II), что при последующей операции промывки раствором серной кислоты приведет к более эффективному отделению скандия от железа.

Осуществление заявляемого способа подтверждается следующими примерами.

Пример 1. Навески фосфорсодержащего ионита в количестве 10 см3 каждая, помещали в пластиковые колонки диаметром 10 мм и высотой 100 мм и пропускали через них определенный объем технологического раствора подземного выщелачивания урана. После завершения пропускания технологического раствора подземного выщелачивания урана через колонки пропускали: через одну, раствор серной кислоты с концентрацией 100 г/дм3, а через другие, сначала, раствор H2SO3 (Nа23) с концентрацией удовлетворяющей мольному соотношению SO3 : железо = 5, а затем раствор серной кислоты с концентрацией 100 г/дм3. Растворы анализировали на скандий, торий, железо, алюминий до и после пропускания через колонки. По разности концентраций и емкости ионитов анализировали степень отмывки.

Из данных таблицы 1 видно, предварительное контактирование фосфорсодержащего ионита с сернистой кислотой позволяет повысить степень отмывки железа (III и II) с 57 до 92%. При этом, вымываемость (потери с операцией) скандия из фазы фосфорсодержащего ионита не увеличивается.

Пример 2. Навески фосфорсодержащего ионита в количестве 10 см3 каждая, помещали в пластиковые колонки диаметром 10 мм и высотой 100 мм и пропускали через них определенный объем технологического раствора подземного выщелачивания урана. После завершения пропускания технологического раствора подземного выщелачивания урана через колонки, параллельно, пропускали раствор сернистой кислоты, с концентрацией удовлетворяющей мольному соотношению SO3 : железо = 1, 3, 5, 7, 10, 12, а затем раствор серной кислоты с концентрацией 100 г/дм3. Растворы анализировали на скандий, торий, железо, алюминий до и после пропускания через колонки. По разности концентраций и емкости ионитов анализировали степень отмывки.

Из данных таблицы l видно, предварительное контактирование фосфорсодержащего ионита с сернистой кислотой в интервале мольного соотношение SO3 : железо = 3-10 позволяет повысить степень отмывки железа (III и II) с 57 до 93%. При этом, при мольном соотношении SO3 : железо = 1, заметного увеличения отмывки железа не происходит. При и мольном соотношении SO3 : железо = 10, заметного увеличения отмывка (потери) скандия.

1. Способ получения концентрата скандия из скандийсодержащего раствора, включающий сорбцию скандия из скандийсодержащего раствора на фосфорсодержащем ионите, промывку насыщенного фосфорсодержащего ионита, десорбцию скандия из насыщенного фосфорсодержащего ионита раствором карбоната натрия с получением десорбированного ионита, который направляют на повторную сорбцию скандия, и раствора десорбции, который предварительно подкисляют с последующим осаждением концентрата скандия путем его обработки гидроксидом натрия или аммиаком, отличающийся тем, что перед промывкой ионита проводят восстановление железа (III) до железа (II) в фазе насыщенного фосфорсодержащего ионита восстановителем.

2. Способ по п. 1, отличающийся тем, что в качестве восстановителя используют раствор сернистой кислоты H2SO3 или сульфита натрия Na2SO3 при мольном соотношении SO3:железо=3÷10:1.



 

Похожие патенты:

Изобретение относится к металлургии редких металлов. Способ переработки эвдиалитового концентрата включает предварительную механоактивацию концентрата и последующую гидрометаллургическую обработку.

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных металлов (далее РЗМ) из продуктивных растворов при сернокислотном выщелачивании урановых руд.

Изобретение относится к способу получения оксида скандия из скандийсодержащих концентратов. Способ включает растворение скандийсодержащего концентрата в минеральной кислоте, очистку скандиевого раствора от примесей, отделение осадка от скандиевого раствора, его обработку щелочным агентом, отделение осадка соединений скандия от раствора.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ.
Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита.

Изобретение относится к комплексной переработке фосфогипса. Технология может быть использована при производстве концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов.

Изобретение относится к способу извлечения редкоземельных элементов из отходов производства минеральных удобрений - фосфогипса. Способ включает выщелачивание и сорбцию редкоземельных элементов из раствора с использованием сорбента с последующей десорбцией редкоземельных элементов раствором сульфата аммония.
Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой.

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и скандия и последующем использовании их в производстве строительных материалов.

Изобретение относится к гидрометаллургии родия. Способ извлечения родия из многокомпонентного хлоридного родийсодержащего раствора включает выдержку раствора при температуре 70-80°С в течение 3-7 часов и приведение его в контакт с анионитом, содержащим полиэтиленполиаминные функциональные группы.

Изобретение касается получения серебра и выделения концентрата металлов платиновой группы при аффинаже сплава драгоценных металлов (сплава Доре), полученного при переработке медеэлектролитных шламов.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных металлов (далее РЗМ) из продуктивных растворов при сернокислотном выщелачивании урановых руд.

Изобретение относится к способу извлечения золота из золотосодержащих сырьевых материалов, включающему (a) выщелачивание указанного золотосодержащего сырьевого материала в содержащем хлорид выщелачивающем растворе и имеющем общую концентрацию галогенид-ионов менее 120 г/л.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ.

Изобретение относится к области гидрометаллургии редких металлов, а именно к способам разделения галлия и алюминия в виде анионных гидроксокомплексов из щелочных растворов с привлечением ионообменных смол.

Изобретение относится к способу переработки сульфидных золотосодержащих концентратов флотации, содержащих сорбционно-активный органический углерод, для извлечения золота.

Изобретение относится к способу извлечения редкоземельных элементов из отходов производства минеральных удобрений - фосфогипса. Способ включает выщелачивание и сорбцию редкоземельных элементов из раствора с использованием сорбента с последующей десорбцией редкоземельных элементов раствором сульфата аммония.

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и скандия и последующем использовании их в производстве строительных материалов.

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой.

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает обработку исходного раствора деэмульгирующим составом, фильтрацию раствора, противоточную экстракцию скандия комплексным экстрагентом, который содержит ди-(2-этилгексил) фосфорную кислоту, трибутилфосфат и разбавитель - нефтяной парафин, например, фракции С10-С13. Затем ведут промывку насыщенного скандием экстрагента раствором серной кислоты, твердофазную реэкстракцию скандия содощелочным раствором с получением концентрата скандия. внесены изменения, при этом в качестве деэмульгатора применяют водорастворимые неионогенные поверхностно-активные вещества (ПАВ) или их растворы; - противоточную экстракцию, промывку и реэкстракцию проводят непрерывно; - а для регенерации экстрагента перед экстракцией скандия его обрабатывают раствором серной кислоты концентрацией 30-100 г/л.. Техническим результатом является повышение эффективности процесса. 4 з.п.ф-лы., 1ил., 6 табл.

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора согласно изобретению используют операцию предварительной обработки фосфорсодержащего ионита раствором сернистой кислоты H2SO3 или сульфита натрия Na2SO3. Это приводит к более эффективной последующей переработке растворов десорбции с получением более чистых по скандию концентратов и упрощению дальнейшего получения оксида скандия. Техническим результатом заявляемого изобретения является получение более чистого концентрата скандия. 1 з.п. ф-лы, 2 табл., 2 пр.

Наверх