Аморфная форма производного тиоколхицина

Изобретение относится к аморфной форме соединения формулы (I), имеющей картину XRPD (порошковой рентгеновской дифракции), которая показана на фиг. 1. Указанная форма обладает улучшенной стабильностью по сравнению с кристаллическими формами и может найти применение, в частности, при лечении солидных опухолей. Изобретение относится также к способу получения указанной аморфной формы и содержащим ее фармацевтическим композициям. 3 н. и 5 з.п. ф-лы, 8 ил., 3 пр.

 

Настоящее изобретение относится к аморфной форме производного тиоколхицина, IDN 5404, к способу ее получения и ее фармацевтическим композициям.

IDN 5404, имеющий следующую формулу (I), представляет собой N-дезацетилтиоколхициноидное производное:

IDN 5404 действует как агент, разрушающий сосуды, который представляет собой класс соединений, способных вызывать быстрый коллапс и некроз сосудистых структур. Поскольку эндотелиальные клетки опухолей являются незрелыми, они гораздо более чувствительны к воздействию агентов, разрушающих сосуды, чем эндотелиальные клетки нормальной ткани. IDN 5404 является полезным в лечении солидных опухолей, особенно в комбинации с другими цитотоксическими агентами.

IDN 5404 раскрыт в ЕР 1263719. В соответствии с процедурой, описанной в примере 2 в ЕР 1263719, продукт (Tiocol 54) сначала кристаллизуют в EtOAc (в виде сольвата EtOAc), затем дополнительно очищают посредством колоночной хроматографии (элюент: этилацетат/гексан, или альтернативно СН2Cl2/EtOH). В патенте не описан способ, которым продукт в конечном счете выделяют из раствора, и форма конечного продукта. Обычно, продукты, подвергающиеся очистке посредством колоночной хроматографии, выделяют просто путем выпаривания растворителя досуха. Обычно с помощью этого способа получают аморфные вещества. Вследствие высокой нерастворимости и тенденции IDN 5404 к сокристаллизации с растворителями, при концентрировании из двух описанных систем элюирования получали IDN 5404 или в виде сольвата EtOAc, или в виде сольвата ЕtOH в кристаллической форме.

Кристаллическая форма, полученная этим способом, может содержать остатки токсичных растворителей, используемых в синтетическом процессе, таких как дихлорметан и гексан, и он имеет очень низкую растворимость.

Объектом настоящего изобретения является аморфное соединение формулы (I):

имеющее картину XRPD (порошковая рентгеновская дифракция), показанную на Фиг. 1.

Аморфное соединение, как определено выше, дополнительно характеризуется по меньшей мере одной из следующих характеристик:

- профиль DSC (дифференциальная сканирующая калориметрия) отличается переходом в стеклообразное состояние с началом при 186,9°С и окончанием при 194,5°С, зарегистрированным с линейной скоростью нагрева 10°С/мин;

- профиль TG/DTA (термогравиметрия/дифференциальный термический анализ) отличается эндотермическим сигналом между 185,4°С и 195,4°С, зарегистрированным с линейной скоростью нагрева 10°С/мин.

Аморфное соединение по настоящему изобретению может быть получено способом, включающим стадии:

а) растворения неочищенного соединения формулы (I) в DMSO;

б) удаления возможных остаточных растворителей, происходящих из синтетического процесса, путем нагревания раствора при 65°С в вакууме;

в) осаждение аморфного соединения формулы (I) путем добавления по каплям раствора, полученного на стадии б), к воде при температуре 20-25°С при перемешивании.

На стадии (а) предпочтительно используют от 1 л до 8 л DMSO (диметилсульфоксид) на 1 кг IDN 5404.

На стадии (в) предпочтительно используют от 8 л до 64 л воды на 1 кг IDN 5404.

Аморфное соединение формулы (I), как оно определено выше, является более растворимым в воде, чем другие кристаллические формы, и оно является химически и физически стабильным. Эти свойства позволяют изготовить твердые формы, содержащие соединение по изобретению.

Кроме того, соединение, полученное способом, указанным выше, не содержит никакого токсического растворителя, используемого в ходе синтетического процесса, такого как дихлорметан и гексан.

Единственным остаточным растворителем, присутствующим в аморфном веществе, является DMSO, который представляет собой растворитель 3 класса (низкая токсичность).

Определенная выше аморфная форма не является сольватированной формой, в отличие от кристаллических форм, определенных посредством полиморфного скрининга, все из которых являются сольватированными формами.

Аморфная форма IDN 5404 обладает полезными свойствами при получении фармацевтических композиций, такими как повышенная растворимость, улучшенная биодоступность, легкость химической обработки и/или легкость изготовления в виде фармацевтической композиции.

Другим объектом настоящего изобретения, следовательно, является фармацевтическая композиция, содержащая аморфное соединение формулы (I), как определено выше, и фармацевтически приемлемый разбавитель и/или носитель.

Фармацевтически приемлемый разбавитель или носитель выбирают с учетом предполагаемого способа введения и стандартной фармацевтической практики. Фармацевтические композиции по настоящему изобретению предпочтительно вводят перорально или парентерально.

Термин "парентеральный", при использовании в данном описании изобретения, включает подкожные инъекции, внутривенные, внутримышечные инъекции или инфузионные методы.

Аморфная форма по настоящему изобретению может быть изготовлена в виде традиционных лекарственных форм, таких как, например, таблетки, пилюли, суспензии, эмульсии, гранулы, капсулы и инъекционные препараты.

Предпочтительными лекарственными формами для соединений по настоящему изобретению являются инъекционные препараты. Соединение формулы (I), как определено выше, может быть использовано отдельно или в комбинации с цитотоксическим агентом для лечения солидных опухолей.

Пример 1

Неочищенный IDN 5404 (1 кг) растворяли в DMSO (8 л). Раствор нагревали при 65°С и выдерживали в вакууме в течение 2-х часов с целью полного удаления растворителей, оставшихся от синтетического процесса. Раствор по каплям добавляли к воде (64 л) при 20-25°С при перемешивании, вызывая осаждение IDN 5404 в виде аморфного твердого вещества. Полученное вещество фильтровали и сушили в вакууме с получением количественного выхода IDN 5404.

Характеристика аморфной формы:

Порошковая рентгеновская дифракция (X-RPD)

Картину X-RPD регистрировали на дифрактометре Bruker D2-Phaser. Генератор рентгеновского излучения работал при 30 кВ и 10 мА, используя линию CuKα в качестве источника излучения. Образец помещали на подходящую щель, и облучаемая длина составляла 10 мм. Данные собирали от 2 до 50 градусов 2-тета с размером шага 0,02 град. 2-тета и временем подсчета на шаг 3 сек. Картина порошковой рентгеновской дифракции аморфного вещества (Фиг. 1) показывает отсутствие дифракционных пиков и широкий шум, типичный для аморфного образца.

Дифференциальная сканирующая калориметрия (DSC)

Анализ проводили, используя систему Mettler DSC1. Тепловой поток регистрировали от 30 до 300°С с линейной скоростью нагрева (10°С/мин) в токе азота 50 мл/мин. Для измерения использовали примерно 5 мг порошка в закрытом алюминиевом тигле (объем 40 мкл) с маленьким отверстием.

Профиль DSC (Фиг. 2) отличается широким эндотермическим сигналом с максимумом примерно при 100°С вследствие высвобождения влаги и переходом в стеклообразное состояние с началом при 186,9°С и окончанием при 194,5°С.

Инфракрасная спектроскопия на основе преобразования Фурье (FTIR)

Инфракрасный спектр регистрировали в режиме нарушенного полного внутреннего отражения (ATR) с использованием спектрометра на основе преобразования Фурье Perkin Elmer Spectrum One, оснащенного дополнительным оборудованием Specac ATR Golden Gate. Спектр представляет собой результат накопления и преобразования 16 наложенных сканограмм в области спектра 4000-550 см-1 at а re.

Спектр FTIR-ATR показан на Фиг. 3 (спектральный диапазон 4000-550 см-1). На нем показаны частоты поглощения при 3286, 2936, 2836, 1669, 1606, 1535, 1484, 1403, 1347, 1320, 1283, 1235, 1194, 1135, 1093, 1019, 983, 922, 841, 795, 777, 575 см-1 ±2 см-1.

Термогравометрия (TG) и дифференциальный термический анализ (DТА)

Анализ выполняли, используя одновременную систему Seiko TG/DTA7200 с использованием открытых алюминиевых чашек (объем 40 мкл). Сигналы TG/DT регистрировали от 30 до 300°С с линейной скоростью нагрева (10°С/мин) в токе азота 200 мл/мин. Для измерения использовали примерно 10 мг порошка.

Профиль TG/DTA (Фиг. 4) отличается широким эндотермическим пиком с максимумом примерно при 60°С вследствие высвобождения остаточной влаги (потеря массы при 100°С=1,55%) и эндотермическим сигналом между 185,4°С и 195,4°С, который можно отнести к переходу в стеклообразное состояние, после чего немедленно следовало экзотермическое разложение.

Пример 2 (сравнительный)

Неочищенный IDN 5404 (500 мг) очищали посредством флэш-хроматографии, используя в качестве элюента AcOEt-гексан 7:3. Фракции, содержащие IDN 5404, объединяли, и растворитель удаляли досуха. IDN 5404 (310 мг) получали в виде кристаллического желтого твердого вещества со следующими характеристиками.

Продукт анализировали посредством GC (газовая хроматография) для определения остаточных органических растворителей: содержание AcOEt составляет 11,1% (22 млн-1 гексана), вследствие чего предположили, что продукт мог представлять собой сольват AcOEt.

Анализ TG/DTA и XRPD осуществляли в тех же условиях, что и в Примере 1.

Профиль TG/DTA для IDN5404 (сольват AcOEt) представлен на Фиг. 5.

Анализ показывает DT-профили, характеризующиеся двумя интенсивными и не полностью разрешенными эндотермическими пиками с началом примерно при 208°С и с двумя максимумами, соответственно, при 221,3°С и 231,2°С.

Эти пики, которые можно отнести к высвобождению кристаллизационного растворителя с последующим плавлением, связаны с потерей массы 5,94% от 200°С до 240°С.

TG-Профиль также показывает постепенную потерю массы примерно 3,1% от 30 до 200°С, с последующей резкой потерей массы, совпадающей с первым эндотермическим пиком.

Общая потеря массы от 30°С до 240°С составляет 9,0%.

XRPD-Дифрактограмма для IDN5404 (сольват AcOEt) представлена на Фиг. 6.

Дифрактограмма характеризуется интенсивными дифракционными пиками и резким профилем пиков, что указывает на высокую кристалличность; картина XRPD указывает на явные отражения, выраженные как значения градусов 2-тета, при: 5,6 - 10,2 - 10,5 - 11,1 - 13,3 - 14,4 - 14,7 - 17,5 - 17,9 - 18,5 - 18,9 - 19,4 - 20,0 - 20,8 - 21,6 - 22,2 - 22,4 - 22,6 - 23,4 - 25,2 - 25,5 - 25,9 - 26,7 - 27,8 - 28,5 - 29,1 - 29,7 - 30,8 - 31,2 - 32,1.

Пример 3 (сравнительный)

Неочищенный IDN 5404 (500 мг) очищали посредством флэш-хроматографии, используя в качестве элюента CH2Cl2-EtOH 95:5. Фракции, содержащие IDN 5404, объединяли и растворитель удаляли досуха. IDN 5404 (315 мг) получали в виде кристаллического желтого твердого вещества со следующими характеристиками:

Продукт анализировали посредством GC для определения остаточных органических растворителей: содержание EtOH составляет 10,7% (269 млн-1 CH2Cl2), вследствие чего предположили, что продукт мог представлять собой сольват EtOH.

Анализ TG/DTA и XRPD осуществляли с тех же условиях, что и в Примере 1.

Профиль TG/DTA для IDN5404 (сольват EtOH) представлен на Фиг. 7.

Анализ показывает профили DT, характеризующиеся эндотермическим пиком с началом примерно при 198°С и с максимумом при 210,6°С.

Этот пик, который можно отнести к плавлению с высвобождением кристаллизационного растворителя, связан с потерей массы 5,34% от 195°С до 230°С.

TG-Профиль также показывал постепенную потерю массы примерно 6,7% от 30 до 195°С.

Общая потеря массы от 30°С до 230°С составляет 12,1%.

Дифрактограмма XRPD для IDN5404 (сольват ЕtOH) представлена на Фиг. 8.

Дифрактограмма характеризуется интенсивными пиками дифракции и острым профилем пиков, что указывает на высокую кристалличность; картина XRPD указывает на явные отражения, выраженные как значения градусов 2-тета, при: 6,3 - 10,4 - 10,6 - 11,2 - 12,5 - 13,3 - 14,4 - 14,8 - 16,9 - 17,8 - 18,8 - 19,3 - 19,7 - 20,3 - 20,9 - 21,8 - 22,5 - 23,0 - 23,3 - 24,9 - 25,5 - 26,0 - 27,1 - 27,9 - 28,9 - 29,4 - 29,7 - 32,2.

Данные по стабильности

Было обнаружено, что аморфная форма соединения (I) является химически стабильной при 25±2°С/60±5% относительной влажности в течение по меньшей мере трех лет и при 40±2°С/75±5% относительной влажности в течение по меньшей мере 6 месяцев, поскольку никакая примесь не выделялась из исходного значения Т0. Анализы осуществляли посредством HPLC (высокоэффективная жидкостная хроматография).

Также было обнаружено, что аморфная форма соединения (I) является физически стабильной при 25±2°С/60±5% относительной влажности в течение по меньшей мере трех лет и при 40±2°С/75±5% относительной влажности в течение по меньшей мере 6 месяцев, так как она сохраняла характерные свойства, указанные на Фиг. 1-4.

Кристаллический IDN 5404, полученный в Примере 2, показывал вариацию химического состава в 7% через один месяц при 40±2°С/75±5% относительной влажности.

Кристаллический IDN 5404, полученный в Примере 3, показывал вариацию химического состава в 4,1% через один месяц при 40±2°С/75±5% относительной влажности.

1. Аморфная форма соединения формулы (I)

,

имеющая картину XRPD (порошковой рентгеновской дифракции), показанную на фиг. 1.

2. Аморфная форма соединения по п.1, имеющая профиль DSC (дифференциальная сканирующая калориметрия), отличающийся переходом в стеклообразное состояние с началом при 186,9°С и окончанием при 194,5°С, зарегистрированным при линейной скорости нагрева 10°С/мин.

3. Аморфная форма соединения по п.1, имеющая профиль TG/DTA (термогравиметрия/дифференциальный термический анализ), отличающийся эндотермическим сигналом от 185,4 до 195,4°С, зарегистрированным при линейной скорости нагрева в 10°С/мин.

4. Способ получения аморфной формы соединения формулы (I), как определено в п.1, включающий стадии:

а) растворения неочищенного соединения формулы (I) в DMSO;

б) удаления возможных остаточных растворителей, происходящих из синтетического процесса, путем нагревания раствора при 65°С в вакууме;

в) осаждения аморфной формы соединения формулы (I) путем добавления по каплям раствора, полученного на стадии б), к воде при 20-25°С.

5. Фармацевтическая композиция, содержащая аморфную форму соединения формулы (I) по любому из пп.1-3 и фармацевтически приемлемый носитель и разбавитель.

6. Фармацевтическая композиция по п.5 для парентерального или перорального введения.

7. Фармацевтическая композиция по п.6 в форме инъекционного препарата.

8. Аморфная форма соединения формулы (I) по любому из пп.1-3 для применения в лечении солидных опухолей.



 

Похожие патенты:

Изобретение относится к соединению, представленному формулой II, его энантиомерам, диастереоизомерам или фармацевтически приемлемым солям, которые обладают модулирующей активностью в отношении N-формилпептидного рецептора-1 (FPRL-1).

Изобретение относится к соединению, представленному формулой II, или его фармацевтически приемлемым солям, где R6 представляет собой -СН2-(С6-10)арил или -СН2-гетероцикл, где гетероцикл представляет собой пиридин или индол; R7 представляет собой Н, F или метил; R8 представляет собой Br или F; R9 представляет собой Н, F или метил; R10 представляет собой ОН или NH2; и включая конкретные структуры или их фармацевтически приемлемые соли.

Изобретение относится к новым 1,3-дизамещенным мочевинам общей формулы I, обладающим способностью ингибировать действие фермента-ацил-КоА: холестерол-ацилтрансферазы, который отвечает за катализ внутриклеточной этерификации холестерина, и способу их получения.

Изобретение относится к способу кристаллизации D,L-метионина из водных растворов и/или суспензий, которые содержат D,L-метионин и аммониевую соль D,L-метионина и имеют содержание Met 70-180 г/кг раствора и/или суспензии, предпочтительно 90-150 г/кг раствора и/или суспензии, и содержание NH4+ 1-5 г/кг раствора и/или суспензии.

Изобретение относится к способу непрерывной подготовки кристаллов метионина высокой насыпной плотности. Процесс заключается в следующем: смешивают раствор гидролизата, содержащий калий и метионин и полученный в результате реакции 5-(β-метилмеркаптоэтил)гидантоина и раствора карбоната калия с материалом внешней циркуляции из нейтрализационного кристаллизатора с циркуляционной трубкой и перегородкой (ЦТиП), имеющего секцию газофазной нейтрализации; после охлаждения вводят материал смеси в распределитель жидкости области нейтрализации в верхней части кристаллизатора и распыляют в виде капель или тонких струек жидкости в зону контакта газа и жидкости для проведения реакции нейтрализации, после чего падение нейтрализационного раствора естественным образом в область кристаллизации в нижней части, где он смешивается с материалом в упомянутой области; обеспечивают выращивание полученной смеси на мелких кристаллах в системе для образования кристаллов, имеющих частицы большего диаметра, и при этом образуются новые центры кристаллизации; в зоне осаждения в средней части области кристаллизации осуществляют осаждение кристаллов, имеющих частицы большего диаметра, в патрубок для отмучивания кристаллов, при этом мелкие кристаллы циркулируют с материалом внешней циркуляции, а часть материала внешней циркуляции используют для отмучивания кристаллов в патрубке для отмучивания кристаллов, тогда как другую часть этого материала смешивают с раствором гидролизата; а кристаллы в патрубке для отмучивания кристаллов подвергают сепарации, промывают и сушат, чтобы получить продукт метионина высокой насыпной плотности.

Изобретение относится к методу разделения и очистки гидроксианалога метионина, синтезированного при помощи гидролиза 2-гидрокси-4-(метилтио)бутаннитрила. Метод характеризуется наличием следующих технологических этапов: 1) нейтрализация гидролизата, содержащего гидроксианалог метионина, сульфат аммония и бисульфат аммония, получаемого путем гидролиза 2-гидрокси-4-(метилтио)бутаннитрила в присутствии серной кислоты, с аммиаком для конвертации бисульфата аммония, присутствующего в системе, в сульфат аммония, его перенасыщения и осаждения с последующим разделением на фазы для получения органического слоя I и водного слоя I, содержащего твердый сульфат аммония; 2) концентрация органического слоя I для удаления воды и осаждения твердого сульфата аммония, разделения на твердую и жидкую фазы, разбавление полученной жидкости водой для получения гидроксианалога метионина коммерческого класса, хранение полученного твердого сульфата аммония для дальнейшего использования; 3) перемешивание водного слоя I, содержащего твердый сульфат аммония, с твердым сульфатом аммония, полученным на этапе 2), разделение на фазы с получением органического слоя II и водного слоя II, содержащего твердый сульфат аммония; 4) разделение на твердую и жидкую фазы водного слоя II, содержащего твердый сульфат аммония, сушка полученной твердой фракции с получением сульфата аммония коммерческого класса.

Изобретение относится к способу получения D,L-метионина. Согласно предлагаемому способу диоксид углерода загружают в водный раствор метионината калия, полученный путем гидролиза 5-(2-метилмеркаптоэтил)гидантоина, чтобы осадить неочищенный метионин, который отделяют и очищают.

Изобретение относится к промежуточным соединениям формулы I где R12 выбран из C1-С8алкила с прямой и разветвленной цепью; каждый R10 независимо выбран из водорода, R12 и -OR12; каждый из R8 и R9 независимо выбран из С1-С8алкила с прямой и разветвленной цепью; r означает 0; G представляет собой кислород; Z1 представляет собой С1-С5алкил с прямой или разветвленной цепью; Ar представляет собой 1,2-, 1,3- или 1,4-фенилен; W выбран из -О- и -S-; и Y представляет собой (С1-С6)алкиленовую группу с прямой или разветвленной цепью, а также к способам синтеза и очистки производных калихеамицина.

Изобретение относится к способу получения продукта, содержащего нитрил 2-гидрокси-4-(метилтио)масляной кислоты, заключающемуся в том, что 3-(метилмеркапто)-пропионовый альдегид подвергают взаимодействию с цианистым водородом в присутствии основания в качестве катализатора в зоне основной реакции с получением нитрила, и остаточный газообразный цианистый водород, выходящий из зоны основной реакции, абсорбируют в зоне абсорбции и последующей реакции, содержащей смесь из 3-(метилмеркапто)пропионового альдегида и катализатора, а также по выбору нитрила 2-гидрокси-4-(метилтио)масляной кислоты, и подвергают дальнейшему превращению с 3-(метилмеркапто)пропионовым альдегидом с последующим удалением продукта, содержащего нитрил 2-гидрокси-4-(метилтио)масляной кислоты, причем в выходящем продукте молярное соотношение между цианистым водородом и непрореагировавшим 3-(метилмеркапто)пропионовым альдегидом превышает 1.

Изобретение относится к применению DL-метионил-DL-метионина и его солей в качестве кормовой добавки в кормовых смесях для животных, разводимых и выращиваемых в аквакультурных хозяйствах.

Изобретение относится к смеси для получения D,L-метионина или 2-гидрокси-4-(метилтио)-масляной кислоты, содержащей нитрил 2-гидрокси-4-метилтиомасляной кислоты в количестве от 86 до 97 мас.

Изобретение относится к области органической химии, а именно к способу получения этилмеркаптана, включающему разделение смеси этилмеркаптана и пропилмеркаптана с примесью более тяжелых меркаптанов в ректификационной колонне, отличающемуся тем, что при нестационарном составе и расходе сырья ректификационную колонну снабжают глухой тарелкой в отгонной части колонны, с которой жидкую фазу по переточному трубопроводу с расходомером направляют на нижележащую тарелку, расход жидкой фазы в переточном трубопроводе фиксируют на постоянном уровне и при снижении расхода жидкой фазы в переточном трубопроводе ниже постоянного уровня в ректификационной колонне создают поток рецикла, перекачивающий остаток или его часть, отводимые с низа ректификационной колонны через холодильник в линию ввода сырья в ректификационную колонну.
Изобретение относится к новым способам очистки диалкилсульфидов со слабовыраженным запахом. Кроме того, изобретение относится к способу получения борановых комплексов диалкилсульфидов высокой чистоты и к способу энантиоселективного восстановления.

Изобретение относится к синтезу 2-[3-(2-хлорэтил)-нитрозоуреидо]-1,3-пропандиола, обладающего противоопухолевой активностью. Способ заключается во взаимодействие 2-хлорэтилизоцианата с 2-амино-1,3-пропандиололом в присутствии смеси ацетонитрил-метанол в соотношении 2:1 с получением промежуточного продукта 2-[3-(2-хлорэтил)уреидо]-1,3-пропандиола, который нитрозируют в присутствии 50%-ного водного раствора муравьиной кислоты по следующей схеме: .

Группа изобретений относится к медицине, а именно к онкологии, и может быть использовано для получения конъюгата для лечения индивидуума с пролиферативным расстройством.

Изобретение относится к области органической химии и раскрывает способ получения фурацилина. Способ включает конденсацию 5-нитрофурфурола с семикарбазидом основанием, полученным конденсацией гидразин-гидрата и мочевины.

Группа изобретений относится к химико-фармацевтической промышленности и представляет собой лиофилизированную композицию, обладающую ингибиторной активностью в отношении PI3 киназы и mTOR, полученную путем сублимационной сушки фармацевтической композиции в виде водного раствора, содержащей 1-(4-{[4-(диметиламино)пиперидин-1-ил]карбонил}фенил)-3-[4-(4,6-диморфолин-4-ил-1,3,5-триазин-2-ил)фенил]мочевину или ее лактат в концентрации раствора менее 6 мг/мл, молочную кислоту в количестве, достаточном для обеспечения прозрачного раствора, и воду; или 1-(4-{[4-(диметиламино)пиперидин-1-ил]карбонил}фенил)-3-[4-(4,6-диморфолин-4-ил-1,3,5-триазин-2-ил)фенил]мочевину или ее фосфат в концентрации раствора менее 4 мг/мл, ортофосфорную кислоту в количестве, достаточном для обеспечения прозрачного раствора, и воду.

Изобретение относится к конкретным соединениям, перечисленным в п.1 формулы изобретения, которые могут найти применение при лечении или профилактике бактериальной колонизации или инфекции у субъекта.

Изобретение относится к аморфной форме соединения формулы, имеющей картину XRPD, которая показана на фиг. 1. Указанная форма обладает улучшенной стабильностью по сравнению с кристаллическими формами и может найти применение, в частности, при лечении солидных опухолей. Изобретение относится также к способу получения указанной аморфной формы и содержащим ее фармацевтическим композициям. 3 н. и 5 з.п. ф-лы, 8 ил., 3 пр.

Наверх