Специальный бетон для ограждающих конструкций защитных сооружений

Изобретение относится к строительству, в частности к составам бетонных смесей, и может быть использовано для возведения ограждающих конструкций защитных сооружений. Специальный бетон, полученный из смеси, содержащей портландцемент, заполнитель, пластифицирующую добавку, органо-минеральный наномодификатор и воду. Органо-минеральный наномодификатор получен совместным помолом до удельной поверхности 550 м2/кг смеси портландцемента, кварцевой муки и аморфного диоксида кремния, при содержании названных компонентов соответственно 30, 40 и 30 масс.%. Перед приготовлением бетона органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2/кг, причем в качестве пластифицирующей добавки использован поликарбоксилатный гиперпластификатор, а в качестве заполнителя использован базальтовый щебень фракции 5-20 мм и 20-40 мм и кварцевый песок, при следующем содержании ингредиентов, кг на м3 бетона: портландцемент – 300; органо-минеральный наномодификатор – 21-36;базальтовый щебень фракции 20-40 мм - 441-491; базальтовый щебень фракции 5-20 мм - 568-618; кварцевый песок - 657-687; поликарбоксилатный гиперпластификатор - 3,9-4,3; вода – 170. Техническим результатом изобретения является повышение прочностных и радиационно-защитных характеристик бетонных конструкций, снижение газо- и водопроницаемости, а также уменьшение стоимости конечной продукции. 3 табл.

 

Изобретение относится к строительству и, в частности, к составам бетонных смесей и может быть использовано для возведения ограждающих конструкций защитных сооружений.

Известен особо тяжелый бетон для защиты от ионизирующих излучений, включающий следующие компоненты, мас. %: сера - 6,46-6,61; сажа - 0,02-0,03; парафин - 0,02-0,03; асбестовое волокно - 0,13-0,28; наполнитель (ферроборовый шлак с удельной поверхностью 150 м2/кг) - 10,68-10,93; заполнитель (свинцовая дробь с диаметром частиц 3-4 мм) - 82,14-82,67 (см. патент РФ №2294029, МПК G21F 1/00, С04В 28/36, 2007 г.).

Недостатком такого бетона является высокая проницаемость.

Известна композиция для изготовления особо прочного и тяжелого бетона для защиты от радиационного излучения, содержащая цемент марки не менее М500, тяжелый заполнитель из отходов производства черной металлургии - бой железосодержащих брикетов фракции не менее 1,25 мм и не более 20 мм, суперпластификатор С-3, воду при следующем соотношении компонентов, кг на м3 бетона: портландцемент - 500-950, суперпластификатор С-3 - 2-10, указанный бой брикетов - 2020-3500, вода - 160-320 (см. патент РФ №2379246, МПК С04В 28/04, С04В 28/06, G21F 1/04, 2010 г.)

К недостаткам данного бетона относится высокая стоимость и трудоемкость приготовления.

Наиболее близким к предлагаемому изобретению, принятый за прототип, является специальный бетон для ограждающих конструкций защитных сооружений, включающий неорганическое вяжущее, серпентинитовый щебень фракции 5-20 мм, серпентинитовую галю, суперпластификатор, оксид кальция, оксид магния, оксид бария или их смеси при следующем соотношении компонентов, масс. %: неорганическое вяжущее 5-20, серпентинитовый щебень фракции 5-20 мм - 31-55, серпентинитовая галя - 6-30 мм, оксиды щелочноземельных металлов - 8,9-10, суперпластификатор - 0,1-1, вода - 4-8 (см. патент РФ №2529031, МПК G21F 1/04, С04В 28/02, 2014 г.).

Недостатками данного бетона являются низкие прочностные характеристики.

Предлагаемое изобретение решает задачу обеспечения коллективной защиты людей от техногенных и природных воздействий. Достоинством ограждающих конструкций из специального бетона является возможность их применения в условиях радиационного, химического и биологического заражения местности, а также эффективно противостоять воздушной ударной волне и сейсмовзрывной волне.

Техническим результатом изобретения является повышение прочностных и радиационно-защитных характеристик бетонных конструкций, снижение газо- и водопроницаемости, а также уменьшение стоимости конечной продукции.

Для решения поставленной задачи, специальный бетон для ограждающих конструкций защитных сооружений, полученный из смеси, содержащей портландцемент, заполнитель, пластифицирующую добавку, органо-минеральный наномодификатор и воду, отличается тем, что органо-минеральный наномодификатор получен совместным помолом до удельной поверхности 550 м2/кг смеси портландцемента, кварцевой муки и аморфного диоксида кремния, при содержании названных компонентов, соответственно 30, 40 и 30 масс. %, при этом, перед приготовлением бетона, органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2/кг, причем, в качестве пластифицирующей добавки использован поликарбоксилатный гиперпластификатор, а в качестве заполнителя использован базальтовый щебень фракции 5-20 мм и 20-40 мм и кварцевый песок, при следующем содержании ингредиентов, в кг на м3 бетона:

портландцемент - 300;
органо-минеральный наномодификатор - 21-36;
базальтовый щебень фракции 20-40 мм - 441-491;
базальтовый щебень фракции 5-20 мм - 568-618;
кварцевый песок - 657-687;
поликарбоксилатный гиперпластификатор - 3,9-4,3;
вода - 170.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признак, указывающий, что органо-минеральный наномодификатор получен «помолом до удельной поверхности 550 м2/кг» позволяет повысить активность наномодификатора, соответственно повышая активность всего вяжущего.

Признак, указывающий, что органо-минеральный наномодификатор получен совместным помолом «портландцемента, кварцевой муки и аморфного диоксида кремния при содержании названных компонентов, соответственно 30, 40 и 30 масс. %» позволяет за счет синергетического действия компонентов создавать центры кристаллизации новообразований, повышая физико-механические характеристики бетона.

Использование органо-минерального наномодификатора позволяет уплотнить и упрочнить структуру путём связывания гидроксида кальция в низкоосновные гидросиликаты и гидроалюминаты кальция, увеличить прочность, предел огнестойкости, газо-, воздухо-, и паропроницаемость.

Признаки, указывающие, что «перед приготовлением бетона, органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2/кг» позволяют обеспечить двухстадийное измельчение вяжущего, что способствует регулированию структурообразования и гомогенизации многокомпонентной системы.

Признак, указывающий что «в качестве пластифицирующей добавки использован поликарбоксилатный гиперпластификатор» позволяет улучшить реологические характеристики бетонной смеси, что снижает трещинообразование и, соответственно, повышает прочность и непроницаемость твердеющего бетона.

Признак, указывающий «в качестве заполнителя использован базальтовый щебень фракции 5-20 мм и 20-40 мм и кварцевый песок» позволяет создавать бетоны с большой однородностью плотности (2410-2 620 кг/м3) и химического состава. Кроме того, базальты отличаются от обычных заполнителей наличием значительного количества элементов с большим атомным номером (Fe, Са, Ti, Mn, K), которые хорошо ослабляют нейтроны.

Признаки, указывающие на соотношение масс ингредиентов, направлены на оптимизацию состава специального бетона, направленную на достижение технического результата.

Органо-минеральный наномодификатор вводится в вяжущее в количестве 7-12% в от массы портландцемента.

Аморфный диоксид кремния получен путем сжигания рисовой шелухи в воздушной среде при температуре 600-700°С в течение 2 часов. Для сравнения применялся диоксид кремния заводского производства «Микрокремнезем МК-85», который вводился в органо-минеральный наномодификатор в том же количестве (30% по массе).

В качестве поликарбоксилатного гиперпластификатора применяют Melflux 1641 F и ViscoCrete 225.Процесс приготовления специального бетона включает пять этапов:

1. Готовится органо-минеральный наномодификатор совместным помолом до удельной поверхности 550 м2/кг портландцемента, кварцевой муки и аморфного диоксида кремния.

2. Затем полученный органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2/кг, получая вяжущее.

3. В бетоносмеситель принудительного действия (лопастной или планетарный) загружаются компоненты бетонной смеси в следующей последовательности: заполнитель, вяжущее, вода. Компоненты бетонной смеси подаются при работающем активаторе смесителя, что позволяет исключить комкование, а также сократить время начального смешивания.

Двухстадийное измельчение вяжущего способствует регулированию структурообразования и гомогенизации многокомпонентной системы, а также позволяет снизить энерго- и ресурсоемкость производства.

Бетоны на базальтовых заполнителях вследствие слабо кристаллизованной структуры являются стойкими к воздействию повышенных и высоких температур. Кроме того, температурное расширение базальтового заполнителя близко к аналогичному показателю цементного камня, что также обеспечивает высокую термическую стойкость указанных бетонов.

Физико-механические характеристики монолитной специального бетона сведены в таблицу 3.

Таким образом, предлагаемый состав имеет следующие преимущества по сравнению с известными:

- повышены прочностные характеристики на 30-54%;

- характеристики газо-, воздухо-, и паропроницаемости снижены на 20-40%;

- снижение стоимости происходит за счет применения в качестве радиационно-защитного заполнителя базальтового щебня взамен дорогих заполнителей (серпентинитовых, свинцовых и т.д.).

Дополнительные примеры составов бетонных смесей, в которых используются конкретные виды аморфного диоксида кремния и гиперпластификаторов.

Аморфный диоксид кремния получен путем сжигания рисовой шелухи в воздушной среде при температуре 600-700°С в течение 2 часов.

Для сравнения применялся диоксид кремния заводского производства -«Микрокремнезем МК-85», который вводился в органо-минеральный наномодификатор в том же количестве (30% по массе).

Несмотря на то, что в случае применения в качестве диоксида кремния «Микрокремнезема МК-85», значения эксплуатационных характеристик получены выше, чем в прототипе, однако, они ниже, чем для разработанного состава. Кроме того, «Микрокремнезем МК-85» значительно дороже, чем аморфный диоксид кремния, полученный из отходов производства (рисовой шелухи).

Специальный бетон для ограждающих конструкций защитных сооружений, полученный из смеси, содержащей портландцемент, заполнитель, пластифицирующую добавку, органо-минеральный наномодификатор и воду, отличающийся тем, что органо-минеральный наномодификатор получен совместным помолом до удельной поверхности 550 м2/кг смеси портландцемента, кварцевой муки и аморфного диоксида кремния, при содержании названных компонентов соответственно 30, 40 и 30 масс. %, при этом перед приготовлением бетона органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2/кг, причем в качестве пластифицирующей добавки использован поликарбоксилатный гиперпластификатор, а в качестве заполнителя использован базальтовый щебень фракции 5-20 мм и 20-40 мм и кварцевый песок, при следующем содержании ингредиентов, кг на м3 бетона:

портландцемент 300
органо-минеральный наномодификатор 21-36
базальтовый щебень фракции 20-40 мм 441-491
базальтовый щебень фракции 5-20 мм 568-618
кварцевый песок 657-687
поликарбоксилатный гиперпластификатор 3,9-4,3
вода 170



 

Похожие патенты:
Изобретение относится к области радиационной защиты объектов. Защитный экран от ионизирующего излучения для бортового комплекса оборудования представляет собой двухслойную структуру, помещенную на наружную поверхность приборной рамы, располагающейся в приборном отсеке.

Противорадиационное разборное укрытие (его варианты) относится к средствам защиты личного состава аварийно-спасательных служб от внешнего облучения радионуклидами, вышедшими из-под контроля в результате аварии на объекте атомной энергетики или в результате ядерного терроризма.

Изобретение относится к области машиностроения. Защитный экран содержит слой поглощения рентгеновского излучения.

Изобретение относится к области создания материалов для защиты от различных видов излучений, обеспечивающих максимально возможное снижение воздействий излучений на обслуживающий персонал и эксплуатируемое электрооборудование.

Изобретение может быть использовано в производстве наполнителей, добавок к почве для выращивания растений, для утяжеления буровых растворов, защиты от радиоактивного и электромагнитного излучения.

Изобретение относится к области защиты от ионизирующего излучения и может быть использовано в радиоэлектронной промышленности. Способ защиты от радиации радиоэлектронной аппаратуры заключается в том, что радиоэлектронную аппаратуру, критичную к радиации и работающую в составе объекта, располагают внутри топливной емкости объекта, преимущественно в резервной части, на стенке, прилегающей к объекту.

Изобретение относится к составу свинцовоглицератного цемента и может найти применение в промышленности строительных материалов. В состав цемента входят следующие компоненты, мас.

Изобретение относится к области ядерной техники, к разработкам материалов для защиты от нейтронного излучения, используемых в качестве биологической защиты ядерного энергетического реактора.

Изобретение относится к многослойному материалу для радиационной защиты типа сэндвич-структуры. Защитный материал содержит слой сцинтилляционного материала, обеспечивающий при поглощении ионизирующего излучения преобразование ионизирующего излучения в множество фотонов сцинтилляции или фотонов низкой энергии на 1 МэВ поданной энергии ионизирующего излучения и равномерное излучение фотонов низкой энергии во всех направлениях.

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Радио-, радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с наночастицами вольфрама, карбида бора и технического углерода при следующем соотношении компонентов (% масс.): сверхвысокомолекулярный полиэтилен - 40-60, вольфрам - 18-20, карбид бора - 15-20, технический углерод УМ-76 - 5-20.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из высокопрочного бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Настоящее изобретение относится к гидравлическому вяжущему, содержащему, в массовых процентах: от 17 до 55% портландцемента, частицы которого имеют D50 от 2 до 11 мкм; по меньшей мере 5% микрокремнезема; от 36 до 70% минеральной добавки А1, частицы которой имеют D50 от 15 до 150 мкм; где сумма этих процентов составляет от 80 до 100%; сумма процентного содержания цемента и микрокремнезема составляет более 28%; минеральная добавка А1 выбрана из шлаков, пуццолановых добавок или кремнистых добавок, таких как кварц, минеральных добавок кремнистого известняка, добавок известняка, таких как карбонат кальция, или их смесей.

Изобретение относится к промышленности строительных материалов и может быть использовано в производстве материалов, изделий, конструкций специального назначения (подземное строительство, строительство гидротехнических сооружений, аэродромов и др.).

Изобретение относится к тампонажным растворам, используемым при цементировании нефтяных и газовых скважин. Тампонажный раствор для цементирования нефтяных и газовых скважин, содержащий портландцемент, адгезионную добавку, понизитель водоотдачи, пеногаситель и воду, в качестве адгезионной добавки содержит клей Силор-Ультра Т, в качестве понизителя водоотдачи водорастворимый эфир целлюлозы - карбоксиметилцеллюлоза, в качестве пластификатора лигносульфонат, в качестве пеногасителя трибутилфосфат при следующем соотношении компонентов, масс.

Изобретение относится к составам сухих строительных смесей для выравнивания поверхностей бетонных изделий. Технический результат - повышение прочности на растяжение при изгибе, прочности на сжатие, снижение водопоглощения и водопоглощения при капиллярном подсосе.

Сухая строительная смесь и твердофазный состав для ее изготовления относятся к безусадочным водонепроницаемым и морозостойким сухим строительным смесям, используемым для ремонта и защиты строящихся и существующих бетонных, кирпичных, каменных и иных минеральных конструкций.

Изобретение относится к строительству, и в частности к составам самоуплотняющихся бетонных смесей, и может быть использовано для монолитного бетонирования. Самоуплотняющийся бетон содержит цемент, инертный наполнитель разного гранулометрического состава, суперпластификатор, добавки и воду.

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве пенобетонов. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 16,1-33,8, вулканический пепел с максимальной крупностью зерен 1,25 мм 32,2-33,8, пенообразователь ПБ-2000 0,25, базальтовое волокно марки РНБ-9-1200-4с длиной 13 мм, а соотношение длины волокон к диаметру (l/d)=1444, 0,9, негашеную известь 0-16,1, строительный гипс 0-0,9, воду – остальное.

Изобретение относится к области промышленных строительных материалов, и может найти применение при ведении ремонтных работ в зоне переменного уровня воды плотин, каналов, мостов и других гидротехнических сооружений, и касается состава цементно-полимерной бетонной смеси для ремонта гидротехнических сооружений.

Изобретение относится к области строительных материалов и может быть использовано для защиты различных поверхностей. Технический результат - повышение адгезионной прочности и морозостойкости защитного покрытия.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из высокопрочного бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к строительству, в частности к составам бетонных смесей, и может быть использовано для возведения ограждающих конструкций защитных сооружений. Специальный бетон, полученный из смеси, содержащей портландцемент, заполнитель, пластифицирующую добавку, органо-минеральный наномодификатор и воду. Органо-минеральный наномодификатор получен совместным помолом до удельной поверхности 550 м2кг смеси портландцемента, кварцевой муки и аморфного диоксида кремния, при содержании названных компонентов соответственно 30, 40 и 30 масс.. Перед приготовлением бетона органо-минеральный наномодификатор смешивают с портландцементом и эту смесь подвергают измельчению до удельной поверхности 600 м2кг, причем в качестве пластифицирующей добавки использован поликарбоксилатный гиперпластификатор, а в качестве заполнителя использован базальтовый щебень фракции 5-20 мм и 20-40 мм и кварцевый песок, при следующем содержании ингредиентов, кг на м3 бетона: портландцемент – 300; органо-минеральный наномодификатор – 21-36;базальтовый щебень фракции 20-40 мм - 441-491; базальтовый щебень фракции 5-20 мм - 568-618; кварцевый песок - 657-687; поликарбоксилатный гиперпластификатор - 3,9-4,3; вода – 170. Техническим результатом изобретения является повышение прочностных и радиационно-защитных характеристик бетонных конструкций, снижение газо- и водопроницаемости, а также уменьшение стоимости конечной продукции. 3 табл.

Наверх