Способ переработки угольной пены электролитического производства алюминия

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с получением осадка и фторсодержащего раствора, при этом выщелачивание хвостов флотации ведут слабощелочным раствором каустической соды при температуре не более 80°С, в течение 2,0÷4,0 часов. Осадок после выщелачивания направляют последовательно на стадии сгущения, фильтрации и сушки с получением угольного концентрата, раствор после фильтрации возвращают на операцию сгущения осадка, а фторсодержащий раствор, полученный при выщелачивании хвостов флотации, направляют на стадию получения фторсодержащего сырья с последующим возвратом его в электролитическое производство. Обеспечивается получение фторсодержащих соединений, которые возвращаются на электролиз, и угольного концентрата, который может эффективно использоваться в цементном производстве в качестве выгорающей добавки. 4 з.п. ф-лы, 5 табл.

 

Изобретение относится к цветной металлургии, в частности к технологии электролитического производства алюминия и защите окружающей среды от воздействия вредных примесей, содержащихся в отходах, а именно к способу переработки угольной пены.

Угольная пена является продуктом неполного сгорания и эрозии самообжигающегося анода и в количественном отношении занимает первое место в ряду твердых углеродсодержащих отходов алюминиевого производства. В настоящее время существует проблема в переработке больших объемов отходов угольной пены, содержащей ценные компоненты, которые могут быть возвращены в производство.

Результатом переработки являются фторсодержащие соединения, которые возвращаются на электролиз, и угольный концентрат, который может эффективно использоваться в цементном производстве, в качестве выгорающей добавки.

Известен способ (патент RU 2402621, С22В 7/00, С04В 7/02, опубл. 27.10.2010) переработки вторичных фторсодержащих материалов электролитического производства алюминия. В способе, включающем подачу, смешение фторсодержащих материалов с компонентами шихты и термообработку шихты, в качестве фторсодержащих материалов используют вторичные фторсодержащие материалы с содержанием фтора не менее 26 вес. %, которые подают в шихту для получения портландцементного клинкера в качестве фторсодержащего минерализатора, в количестве, обеспечивающем содержание фтора в исходной шихте для получения портландцементного клинкера 0,07-0,25 вес. %. Причем в качестве вторичного фторсодержащего материала могут быть использованы электролитная угольная пена, оборотный электролит, флотационный и/или регенерационный криолит, смешанный криолит. Кроме того, в состав фторсодержащего минерализатора дополнительно может быть введен фторид кальция при следующем соотношении компонентов, вес. %: вторичный фторсодержащий материал, используемый в электролитическом производстве алюминия - 30-90; фторид кальция - остальное.

Общими признаками заявляемого способа с аналогом являются:

- переработка именно электролитной угольной пены.

Недостатком данного способа являются:

- отсутствие стабильности состава получаемого клинкера;

- использование дорогостоящих сырьевых добавок.

Известен способ (патент RU 2505476, С01В 7/19, опубл. 27.01.2014) переработки угольной пены и получения фтористого водорода, который включает сернокислотное разложение фторсодержащего материала алюминиевого производства при нагревании реакционной смеси. В составе используемых материалов определяют содержание фторидов и оксидов металлов, а оптимальную дозировку серной кислоты рассчитывают. Изобретение позволяет расширить сырьевую базу для производства фтористого водорода, утилизировать вторичные фторсодержащие продукты и отходы электролитического производства алюминия.

Общими признаками заявляемого способа с аналогом являются:

- переработка электролитной угольной пены;

- выделение фтора из углеродсодержащих отходов.

Недостатком данного способа являются:

- необходимость применения оборудования в кислотостойком исполнении;

- наличие экологических рисков.

Ближайшим аналогом является способ переработки фторсодержащих отходов электро-литического производства алюминия (патент RU 2472865, С25С 3/18, С22В7, С22В21, опубл. 20.01.2013), который включает загрузку материала в металлургическую печь, нагрев, выдержку в течение 0,5-1,0 часа. При этом в отходы перед нагревом вводят добавку фтористых солей щелочноземельных и/или щелочных металлов в количестве 1-5%. Нагрев ведут до температуры 1100-1300°С и проводят выдержку при этой температуре без доступа воздуха или с ограничением доступа с подачей газообразных продуктов реакции в систему сухой газоочистки. Затем ведут разделение фаз электролита и углерода в виде углеродного остатка.

Общими признаками заявляемого способа с аналогом являются:

- переработка электролитной угольной пены;

- разделение фтористых солей и угольного остатка;

- возврат фторсодержащих продуктов в производство алюминия.

Недостатком данного способа являются:

- необходимость применения дорогостоящего оборудования;

- низкая производительность.

Задачей заявляемого изобретения является разработка технологически простого способа переработки фторуглеродсодержащих отходов, а именно угольной пены, с получением угольного концентрата, пригодного для применения в смежных отраслях промышленности, а также материалов, содержащих ценные компоненты и направляемые на производство алюминия.

Техническим результатом изобретения является повышение степени извлечения из отходов угольной пены ценных компонентов и возвращение их в технологический процесс.

Технический результат достигается тем, что способ переработки угольной пены электролитического производства алюминия, включающий обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с получением осадка и фторсодержащего раствора, согласно заявляемому изобретению, выщелачивание хвостов флотации ведут слабощелочным раствором каустической соды при температуре не более 80°С, в течение 2,0÷4,0 часов, осадок после выщелачивания направляют последовательно на стадии сгущения, фильтрации и сушки с получением угольного концентрата, раствор после фильтрации возвращают на операцию сгущения осадка, а фторсодержащий раствор, полученный при выщелачивании хвостов флотации, направляют на стадию получения фторсодержащего сырья с последующим возвратом его в электролитическое производство.

Способ дополняют частные случаи его реализации.

Перед обратной флотацией отходы угольной пены подвергают дроблению и мокрому помолу посредством подачи воды при соотношении Ж : Т в пределах (2-4):1;

Концентрация каустической соды составляет не более 35 г/дм3;

При выщелачивании хвостов флотации поддерживают соотношение Ж : Т, равное 7-8:1;

Сгущение осадка после выщелачивания ведут при температуре 60-70°С при соотношении Ж : Т, равном 1,5-2:1.

На переработку поступает угольная пена, типичный химический состав которой по фтору - не менее 26%, по углероду - не более 35%.

Температура выщелачивания не должна превышать 80°С, т.к. превышение этой температуры приводит к значительному парообразованию и изменению концентрации щелочи в растворе. Процесс выщелачивания протекает.

Продолжительность выщелачивания предпочтительно проводить от 2 до 4 часов, поскольку при продолжительности менее 2 часов невозможно достигнуть необходимой концентрации фтора в растворе, при продолжительности более 4 часов, из-за высоких температур и агрессивности сред, возможно разрушение емкостного оборудования и перемешивающих устройств.

Предлагаемая технология переработки отходов в виде угольной пены состоит из следующих операций:

1 - дробление угольной пены до крупности менее 10 мм;

2 - мокрый помол полученных измельченных отходов в шаровой мельнице при подаче воды и поддержании отношения Ж : Т в пределах (2-4):1 (по массе) с получением пульпы класса около 0.074 мм при дозированной подаче отходов в мельницу в интервале 1-3 т/ч;

3 - обратная флотация угольной пены посредством воды с получением флотационного криолита (камерный продукт) и хвостов флотации (пенный продукт);

4 - сгущение и фильтрация флотационного криолита и возврат полученного продукта в электролитическое производство;

5 - выщелачивание хвостов флотации слабощелочным раствором NaOH при температуре не более 80°C с получением угольного концентрата и фторсодержащего раствора;

6 - подача фторсодержащего раствора в реактор на осаждение для получения фторсодержащего сырья и последующий возврат его в электолитическое производство;

7 - фильтрация и сушка угольного концентрата для использования полученного продукта в смежных отраслях промышленности;

Предлагаемая технология осуществляется следующим образом.

Отходы угольной пены из корпусов электролиза поступают в отделение дробления.

Дробленые отходы крупностью менее 10 мм автомашинами завозят в приемный бункер узла измельчения, из которого ленточным транспортером, элеватором загружают в расходные бункеры угольной пены. На ленточном транспортере металлический лом улавливается с помощью металлоотделителя.

Из бункеров вибропитателями угольная пена дозированно подается в шаровые мельницы, работающие в замкнутом цикле со спиральными классификаторами.

Для осуществления мокрого помола, в мельницу подают воду. Количество воды и пены определяют по результатам измерения отношения Ж : Т в сливе мельницы, которое поддерживается в пределах (2-4):1 и обеспечивается регулировкой подачи воды в течку для транспортировки песков классификатора.

Работа узла измельчения и классификации определяется следующими параметрами:

- весовое отношение Ж : Т в сливе классификатора - (2-4):1;

- крупность слива классификатора 50-80% класса -0,074 мм;

- дозировка угольной пены в мельницу - 1-3 т/ч (по весоизмерителю или визуально).

Весовое отношение Ж : Т в сливе классификатора обеспечивают регулировкой подачи воды на смыв и транспортировку промпродуктов флотации.

Флотируемый класс слива классификатора (крупностью 0,074 мм) насосами подают на стадию обратной флотации.

Процесс обратной флотации основан на различной смачиваемости водой обогащаемого материала, а именно: углерода, фторидов и глинозема. В результате флотации получают два продукта - пенный и камерный:

- камерный продукт - флотационный криолит, который направляется на сгущение и фильтрацию;

- пенный продукт - хвосты флотации, который поступает на выщелачивание;

Основные параметры процесса обратной флотации, обеспечивающие его эффективность:

- содержание фтора в хвостах - не более 8%;

- содержание углерода в хвостах - не менее 75%;

- содержание углерода в криолите - не более 1,5%

- извлечение фтора в криолит - не менее 90%.

Хвосты флотации подаются в мешалку с слабощелочным раствором. В результате выщелачивания получается угольный концентрат и фторсодержащий раствор:

- фторсодержащий раствор направляют в реактор на осаждение с получением фторсодержащего сырья, пригодного для повторного использования в электролитическом производстве;

- угольный концентрат направляют на фильтрацию и сушку.

Основные параметры процесса выщелачивания, обеспечивающие его эффективность:

- концентрация NaOH в растворе - не более 17,5 г/дм3;

- температура процесса - не более 80°С;

- содержание углерода в концентрате - не менее 90%;

- содержание фтора в концентрате - не более 1%;

- извлечение фтора в раствор - не менее 75%.

Содержание углерода в концентрате 90% и выше позволяет рассматривать его как заменитель высококачественного угля в других отраслях промышленности.

Пример осуществления способа.

Для подтверждения технической целесообразности двухстадийной переработки угольной пены электролизеров были проведены испытания на Красноярском алюминиевом заводе.

За время проведения испытаний было переработано 246,5 тонн угольной пены, подача воды на измельчение Ж:Т=2:1. После обратной флотации получено 93 тонны хвостов флотации. Результаты анализа угольной пены до процесса флотации представлены в таблице 1, а результаты анализа хвостов флотации угольной пены представлены в таблице 2.

Хвосты флотации подавались на выщелачивание в мешалку, туда же подавался раствор каустической соды, концентрацией 35 г/дм3. Нагрев раствора осуществлялся, за счет подачи пара, до температуры 80°С. Среднее время выщелачивания составило 2-4 часа, Ж:Т=7,5:1, что позволило достигнуть концентрации в растворе NaF - 20 г/дм3. Пульпа после выщелачивания подавалась в сгуститель. Осветленные растворы отправлялись на осаждение регенерационного криолита, а угольный концентрат отфильтровывался на вакуумном фильтре и высушивался.

Фторсодержащие растворы после выщелачивания подавались в реактор варки криолита, где смешивались с алюминатным раствором и раствором надшламовой воды. Образование криолита происходило по реакции:

12NaF+αkNa2O×Al2O3+(6+2αk)NaHCO3→2Na3AlF6+(6+2αk)Na2CO3+(3+αk)H2O

Температура процесса не ниже 105°С, время 2 часа. Результаты представлены в таблице 3.

После процесса варки криолита остаточное содержание NaF в маточном растворе - 5 г/дм3. Пульпа регенерационного криолита подавалась в сгуститель, откуда осветленная часть подавалась на приготовление растворов для газоочистки, а осадок на фильтрацию и сушку. Во время процесса проводился отбор проб из растворов для корректировки технологических параметров.

Достигнуто извлечение по фтору более 90%. Полученный регенерационный криолит был возвращен в электролизное производство алюминия. Угольный концентрат содержит более 90% углерода, F и Na - 0,5%. Низкая зольность и малое количество летучих позволит заместить им высококачественный уголь в других отраслях промышленности. Анализ регенерационного криолита представлен в таблице 4.

Результаты анализа полученного угольного концентрата представлены в таблице 5.

Результатом переработки являются фторсодержащие соединения, которые возвращаются на электролиз, и угольный концентрат, который может эффективно использоваться в цементном производстве, в качестве выгорающей добавки.

1. Способ переработки угольной пены электролитического производства алюминия, включающий обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с получением осадка и фторсодержащего раствора, при этом выщелачивание хвостов флотации ведут слабощелочным раствором каустической соды при температуре не более 80°С, в течение 2,0÷4,0 часов, осадок после выщелачивания направляют последовательно на стадии сгущения, фильтрации и сушки с получением угольного концентрата, раствор после фильтрации возвращают на операцию сгущения осадка, а фторсодержащий раствор, полученный при выщелачивании хвостов флотации, направляют на стадию получения фторсодержащего сырья с последующим возвратом его в электролитическое производство.

2. Способ по п. 1, отличающийся тем, что перед обратной флотацией отходы угольной пены подвергают дроблению и мокрому помолу посредством подачи воды при соотношении Ж : Т в пределах (2-4):1.

3. Способ по п. 1, отличающийся тем, что концентрация каустической соды составляет не более 35 г/дм3.

4. Способ по п. 1, отличающийся тем, что при выщелачивании хвостов флотации поддерживают соотношение Ж : Т, равное 7-8:1.

5. Способ по п. 1, отличающийся тем, что сгущение осадка после выщелачивания ведут при температуре 60-70°С при соотношении Ж : Т, равном 1,5-2:1.



 

Похожие патенты:
Изобретение относится к способам переработки нефти, в частности, к способам извлечения ванадия и никеля из нефтяного кокса. Способ включает измельчение нефтяного кокса до частиц, размер которых не превышает 0,05 мм, в присутствии 8-10 мас.

Изобретение относится к способу переработки огнеупорной части отработанной футеровки алюминиевых электролизеров. Способ включает измельчение футеровки в водной среде, выщелачивание, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта, пульпу обрабатывают раствором надшламовой воды при температуре не более 60°С в течение 2-4 часов, пульпу после выщелачивания направляют на сгущение, фильтрацию и сушку с получением шамотного концентрата.

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5 мкФ.

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном.

Изобретение касается получения серебра и выделения концентрата металлов платиновой группы при аффинаже сплава драгоценных металлов (сплава Доре), полученного при переработке медеэлектролитных шламов.
Изобретение относится к области ресурсосбережения и регенерации материалов при утилизации объектов техники, в частности, оно предназначено для извлечения порошка наполнителя из композиционного материала.

Изобретение относится к металлургии благородных металлов и может быть использовано при переработке отработанных катализаторов на основе оксидов алюминия, кремния, магния, содержащих благородные металлы и рений.

Изобретение относится к способу утилизации литийсодержащих отходов в виде батарей. Способ включает разрядку отработанных литиевых батарей с использованием разрядной установки.

Изобретение относится к цветной металлургии, в частности к переработке отработанной футеровки электролизеров для получения алюминия с целью извлечения соединений фтора, возврата их в основное производство и иного использования.

Изобретение может быть использовано при подготовке сырья для черной металлургии. Для утилизации шлама хроматного производства проводят совместную переработку шламов хроматного производства с железорудным концентратом в процессе агломерации шихты.

Изобретение относится к переработке вторичного сырья с получением цветных металлов и может быть использовано для переработки кусковых отходов твердых сплавов на основе карбида вольфрама, титана, тантала с кобальтовой или никелевой связкой. Реактор переработки отходов твердых сплавов включает футерованный корпус с загрузочным люком, графитовый пенал, графитовый нагревательный элемент с прорезями, вакуумный насос, термопару и, установленные в графитовом пенале, разделительные перегородки с отверстиями, снабженные высокотемпературными прокладками. Графитовый пенал установлен в корпусе и состоит из двух стаканов, расположенных навстречу друг другу верхними кромками, и цилиндрического элемента, установленного между стаканами. При этом перегородки разделяют графитовый пенал на зоны нагрева, конденсации и деструкции. Нагревательный элемент расположен с внешней стороны графитового пенала и выполнен в виде двух полуцилиндров, один из которых расположен в зоне нагрева, а второй в зоне конденсации. Нагревательный элемент соединен с трансформатором через графитовые электроды. Реактор снабжен водоохлаждаемым контуром, установленным между графитовым пеналом и загрузочным люком, а также патрубком для подключения вакуумного насоса. Изобретение обеспечивает снижение потери ценного сырья, продолжительности переработки, а также повышение производительности процесса. 3 ил.

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру, соединенную при помощи короткого трубопровода с быстродействующим клапаном с ресивером, и имеющую быстродействующий клапан напуска атмосферы. Соотношение объемов рабочей камеры и ресивера составляет меньше чем 1:200. Устройство увеличивает выход ультрадисперсных частиц драгоценных металлов при их извлечении из золотоносных глинистых пород. 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в металлургии. Для получения гранулята молибденсодержащего отработанные молибденсодержащие катализаторы загружают в прокалочную вращающуюся печь и при температуре 135-180°С проводят удаление серы и влаги. Полученный продукт рассевают и отделяют керамическую составляющую и пылеобразную фракцию. Оставшийся материал повторно загружают в прокалочную печь и при температуре 170-350°С проводят вторичное удаление серы и углерода. На выходе получают готовый материал в виде молибденсодержащего гранулята. Изобретение позволяет обезвредить опасные отходы при сравнительно невысоких температурах с получением гранулята для легирования стали. 1 ил.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки. Также заявлена установка обработки материала. Технический результат – повышение эффективности обработки шлака. 2 н. и 12 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в дистиллированной воде при ёмкости разрядных конденсаторов 55 мкФ, напряжении 100 В и частоте импульсов 140 Гц. Порошковый материал имеет средний размер частиц 20-25 мкм. Обеспечивается уменьшение пористости покрытий и увеличение твердости и адгезионной стойкости покрытий. 3 ил., 3 пр.
Наверх