Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO2 толщиной 10-17 нм, второй слой из SiO2 толщиной 27-36 нм, третий слой из TiO2 толщиной 102-120 нм и четвертый слой из SiO2 толщиной 87-95 нм. Антибликовое покрытие (второй вариант) содержит первый внутренний слой из ITO толщиной 120-250 нм, второй слой из TiO2 толщиной 0-22 нм, третий слой из SiO2 толщиной 184-210 нм, четвертый слой из TiO2 толщиной 17-100 нм и пятый слой из SiO2 толщиной 75-125 нм. Антибликовый экран представляет собой силикатное стекло с нанесенным по крайней мере на одну его сторону одним из указанных выше покрытием. Силикатное стекло имеет толщину от 1 до 3 мм, собственный коэффициент пропускания не менее 90%, коэффициент отражения с двух граней не более 9%, действительную часть коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм. Технический результат - обеспечение снижения интегрального коэффициента отражения и повышение интегрального коэффициента пропускания (для двухстороннего покрытия) антибликового экрана, в том числе в условиях высокой освещенности, без увеличения количества слоев покрытия (4 слоя - для антибликового покрытия, 5 слоев - для антибликового электрообогревного покрытия) 3 н.п. ф-лы, 7 пр.

 

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники и может быть использовано при изготовлении приборных панелей летательных аппаратов (ЛА).

В настоящее время существует проблема возникновения бликов от остекления приборных панелей ЛА, мешающих экипажу считывать показания приборов в условиях высокого уровня освещенности в кабине. В ЛА эффективное снижение интенсивности бликов может быть достигнуто за счет существенного уменьшения коэффициента отражения (до значений меньше 1%) остекления приборных панелей, что достигается нанесением на его поверхность многослойного антибликового покрытия, обеспечивающего широкополосное интерференционное просветление.

Применение многослойных антибликовых покрытий возможно как для приборов с воздушной прослойкой между излучающим индикатором и остеклением, так и для приборов без воздушной прослойки.

Многослойные покрытия могут быть нанесены на подложку (основной материал остекления, например, силикатное или органическое стекло) различными методами: магнетронным распылением, золь-гель методом, гальваническим и другими. Метод нанесения покрытий магнетронным распылением является наиболее простым, технологичным и масштабируемым в массовом производстве.

В составе многослойных антибликовых электрообогревных покрытий наиболее часто встречаются сочетания чередующихся слоев следующих материалов: оксида кремния (SiO2), оксида ниобия (Nb2O5), оксида олова, легированного сурьмой (АТО), оксида индия, легированного оловом (ITO), оксида цинка (ZnO) и оксида титана (TiO2). Чередование слоев различной толщины с высоким и низким коэффициентом преломления позволяет достичь широкополосного интерференционного просветления подложки в видимом диапазоне.

Известно многослойное антибликовое покрытие, предназначенное для нанесения на экран дисплея, в котором первый (внутренний) слой толщиной 200÷600 нм состоит из частиц АТО, диаметр которых лежит в диапазоне от 5 до 20 нм, выполняет антистатическую функцию, а также участвует в подавлении отражения падающего света, являясь слоем с высоким показателем преломления (1,8), второй слой толщиной 100÷200 нм состоит из частиц TiO2 диаметром от 5 до 50 нм (показатель преломления 2,0), третий (внешний) слой толщиной от 100 до 200 нм состоит из силикагеля. Покрытие может содержать четвертый слой из TiO2 и пятый слой из SiO2 (US 5652477 А, 29.07.1997).

Недостатком данного покрытия является многостадийность процесса его изготовления (нанесение первого слоя - нагрев - нанесение второго слоя - нанесение силикагеля при заданной температуре).

Известен экран дисплея с антистатическим антибликовым покрытием, включающим внутренний слой из диоксида кремния, в который встроены электропроводящие частицы размером до 50 нм (например, АТО), и внешний слой из оксида кремния, при этом антиотражающий эффект обеспечивается всеми слоями в совокупности. Покрытие может содержать третий слой из диоксида кремния, полученный путем разложения алкоксисилана на поверхности сформировавшегося второго слоя (ЕР 0649160 В1, 19.09.2001).

Известно антибликовое антистатическое покрытие, наносимое на экран дисплея электронно-лучевой трубки, которое снабжено антистатическим покрытием, содержащим электропроводящие частицы, например АТО, а также дополнительным слоем диоксида кремния для получения антиотражающего эффекта. В состав покрытия может входить третий слой, состоящий из SiO2, полученного путем разложения алкоксисилана на поверхности сформировавшегося второго слоя. Светопропускание может варьироваться в пределах от 30% до 90%, поверхностное сопротивление - от 104 Ом/кв до 1010 Ом/кв (US 6087769 А, 11.07.2000).

Недостатком этих покрытий является сложность технологического процесса их изготовления, раздельное нанесение каждого слоя, наличие термообработки во время процесса изготовления, использование растворов и суспензий.

Наиболее близким аналогом предложенных покрытий является многослойное антибликовое покрытие, состоящее из пяти слоев. Первый (внешний) слой толщиной от 10 до 60 нм состоит из оксида с высоким показателем преломления. Второй слой толщиной от 10 до 70 нм состоит из оксида с низким показателем преломления. Третий слой толщиной от 30 до 100 нм состоит из оксида с высоким показателем преломления. Четвертый слой толщиной от 10 до 70 нм состоит из оксида с низким показателем преломления. Пятый (внутренний) слой толщиной от 10 до 60 нм, расположенный на подложке, состоит из оксида с высоким коэффициентом преломления. Покрытие может быть как антибликовым, так и антибликовым электрообогревным. Предпочтительный состав слоев, начиная с внешнего, следующий: ITO - SiO2-Nb2O5-SiO2-Nb2O5. Слои данного покрытия могут быть получены путем магнетронного распыления мишени в среде аргона с добавкой кислорода.

Наиболее близким аналогом предложенного антибликового экрана является антибликовый экран, представляющий собой полимерное стекло с нанесенным на него вышеописанным покрытием (JP 2003004902 А, 08.01.2003).

Недостатком покрытия-прототипа является необходимость использования Nb2O5 в качестве материала с высоким коэффициентом преломления, чьи оптические характеристики при получении магнетронным реактивным распылением хуже, чем у TiO2. Полимерное стекло, используемое в качестве подложки, легко царапается и деформируется при перепадах температур.

Технической задачей предлагаемого изобретения является разработка антибликового и антибликового электрообогревного покрытий, обеспечивающих улучшенные оптические свойства для антибликового экрана на основе наиболее распространенного и недорогого силикатного стекла со следующими показателями: толщина от 1 до 3 мм, собственный коэффициент пропускания не менее 90%, коэффициент отражения с двух граней не более 9%, действительная часть коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм.

Техническим результатом заявленной группы изобретений является обеспечение снижения интегрального коэффициента отражения до значений не более 1% и повышение интегрального коэффициента пропускания (для двухстороннего покрытия) антибликового экрана до значений не менее 95%, в том числе в условиях высокой освещенности, без увеличения количества слоев покрытия (4 слоя - для антибликового покрытия, 5 слоев - для антибликового электрообогревного покрытия) и без увеличения количества материалов мишеней для изготовления покрытия (2 мишени - из Ti и Si - для антибликового покрытия, 3 мишени - из Si, Ti и сплава In-Sn - для антибликового электрообогревного покрытия).

Технический результат достигается за счет того, что предложено антибликовое покрытие подложки, содержащее первый внутренний слой из оксида титана толщиной 10-17 нм, второй слой из оксида кремния толщиной 27-36 нм, третий слой из оксида титана толщиной 102-120 нм и четвертый слой из оксида кремния толщиной 87-95 нм.

Технический результат достигается также за счет того, что предложено антибликовое покрытие подложки, содержащее первый внутренний слой из оксида индия, легированного оловом, толщиной 120-250 нм, второй слой из оксида титана толщиной до 22 нм, третий слой из оксида кремния толщиной 184-210 нм, четвертый слой из оксида титана толщиной 17-100 нм и пятый слой из оксида кремния толщиной 75-125 нм.

Также предложен антибликовый экран, выполненный из силикатного стекла и содержащий нанесенное по крайней мере на одну его сторону одно из вышеописанных антибликовых покрытий, при этом силикатное стекло имеет толщину от 1 до 3 мм, собственный коэффициент пропускания не менее 90%, коэффициент отражения с двух граней не более 9%, действительную часть коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм.

Наиболее доступное и распространенное силикатное стекло обладает следующими параметрами: толщиной от 1 до 3 мм, собственным коэффициентом пропускания не менее 90%, коэффициентом отражения с двух граней не более 9%, действительной частью коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм.

Толщины и составы антибликового и антибликового электрообогревного покрытий для силикатного стекла с указанными свойствами были оптимизированы следующим образом. Сначала были сняты спектры отражения и пропускания используемых силикатных стекол. Из этих характеристик были получены дисперсии коэффициентов преломления. Затем на указанные стекла наносились отдельные слои ITO, SiO2, TiO2, снимались спектры отражения и пропускания, из которых были получены дисперсии отдельных слоев покрытий ITO, SiO2, TiO2. Далее по известной дисперсии коэффициентов преломления стекол и покрытий ITO, SiO2, TiO2 с помощью математического моделирования прохождения электромагнитного излучения подбирались толщины слоев с условием достижения минимального интегрального коэффициента отражения и максимального коэффициента пропускания.

Таким образом, подобранные в ходе моделирования толщины и составы покрытий обеспечивают низкий коэффициент отражения (менее 1%) и высокий коэффициент пропускания (более 95%), при использовании в качестве подложки стекла с указанными выше параметрами.

Поскольку толщины слоев покрытий были оптимизированы под экспериментально полученные дисперсии коэффициентов преломления, вне границ диапазона толщин указанных слоев покрытия будут обладать худшими оптическими характеристиками. Выбор материалов покрытий произведен на основании наибольшей разницы коэффициентов преломления слоев.

Действительная часть коэффициентов преломления используемых материалов при длине волны 550 нм должны составлять: TiO2 - не менее 2.30, SiO2- 1.45-1.47, ITO - 1.90-1.94.

Примеры осуществления изобретения.

Методом реактивного магнетронного распыления на установке для нанесения оптических покрытий в смеси аргона и кислорода за один технологический процесс без дополнительной термообработки были нанесены многослойные покрытия с использованием следующих мишеней: чистый Ti, чистый Si и сплав In-Sn в массовом соотношении 10:1 (для нанесения электропроводящего слоя).

В качестве подложки использовали широкодоступные силикатные стекла с действительной частью коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм. В примерах 1-4 получали односторонние многослойные покрытия, в примерах 5-7 -двухстороннее.

В примерах 1, 2, 5 получали антибликовые покрытия, в примерах - 3, 4, 6, 7 - антибликовые электрообогревные покрытия.

Для односторонних покрытий измерялся интегральный коэффициент отражения с одной грани стекла, нормированный согласно ГОСТ EN 410-2014, для двухсторонних - интегральный коэффициент отражения и пропускания по ГОСТ EN 410-2014.

Пример 1.

На силикатном стекле толщиной 1 мм с собственным коэффициентом пропускания 91%, коэффициентом отражения с двух граней 8,2%, действительной частью коэффициента преломления 1,52 при длине волны 550 нм, с одной стороны было нанесено покрытие следующего состава, начиная с внутреннего слоя: TiO2 (10 нм) - SiO2 (27 нм) - TiO2 (102 нм) - SiO2 (87 нм). Интегральный коэффициент отражения грани стекла с нанесенным покрытием - 0,4%.

Пример 2.

На силикатном стекле толщиной 3 мм с собственным коэффициентом пропускания 90%, коэффициентом отражения с двух граней 9%, действительной частью коэффициента преломления 1,53 при длине волны 550 нм с одной стороны нанесено покрытие следующего состава, начиная с внутреннего слоя: TiO2 (17 нм) - SiO2 (36 нм) - TiO2 (120 нм) -SiO2 (95 нм). Интегральный коэффициент отражения грани стекла с нанесенным покрытием - 0,4%.

Пример 3.

На силикатном стекле толщиной 1 мм с собственным коэффициентом пропускания 91%, коэффициентом отражения с двух граней 8,2%, действительной частью коэффициента преломления 1,52 при длине волны 550 нм с одной стороны нанесено покрытие следующего состава, начиная с внутреннего слоя: ITO (136 нм) - SiO2 (204 нм) - TiO2 (19 нм) -SiO2 (122 нм). Интегральный коэффициент отражения грани стекла с нанесенным покрытием - 0,4%.

Пример 4.

На силикатном стекле толщиной 3 мм с собственным коэффициентом пропускания 90%, коэффициентом отражения с двух граней 9%, действительной частью коэффициента преломления 1,53 при длине волны 550 нм с одной стороны нанесено антибликовое покрытие следующего состава, начиная с внутреннего слоя: ITO (247 нм) - TiO2 (20 нм) - SiO2 (187 нм) - TiO2 (95 нм) - SiO2 (80 нм). Интегральный коэффициент отражения грани стекла с нанесенным покрытием - 0,4%.

Пример 5.

На силикатном стекле толщиной 1,5 мм с собственным коэффициентом пропускания 91%, коэффициентом отражения с двух граней 8,2%, действительной частью коэффициента преломления 1,52 при длине волны 550 нм с двух сторон нанесено покрытие следующего состава, начиная с внутреннего слоя: TiO2 (12 нм) - SiO2 (34 нм) - TiO2 (111 нм) - SiO2 (88 нм). Интегральный коэффициент отражения с двух граней стекла - 0,3%, интегральный коэффициент пропускания - 98,1%.

Пример 6.

На силикатном стекле толщиной 2 мм с собственным коэффициентом пропускания 91%, коэффициентом отражения с двух граней 8,2%, действительной частью коэффициента преломления 1,52 при длине волны 550 нм с двух сторон нанесено покрытие следующего состава, начиная с внутреннего слоя: ITO (247 нм) - TiO2 (20 нм) - SiO2 (187 нм) - TiO2 (95 нм) - SiO2 (80 нм). Интегральный коэффициент отражения с двух граней стекла - 0,9%, интегральный коэффициент пропускания - 97,6%

Пример 7.

На силикатном стекле толщиной 3 мм с собственным коэффициентом пропускания 90%, коэффициентом отражения с двух граней 9%, действительной частью коэффициента преломления 1,53 при длине волны 550 нм с одной стороны нанесено антибликовое покрытие следующего состава, начиная с внутреннего слоя: ITO (137 нм) - SiO2 (204 нм) - TiO2 (19 нм) - SiO2 (123 нм), на другую сторону нанесено покрытие следующего состава, начиная с внутреннего слоя: TiO2 (12 нм) - SiO2 (34 нм) - TiO2 (111 нм) - SiO2 (88 нм). Интегральный коэффициент отражения с двух граней стекла - 0,7%, интегральный коэффициент пропускания 96,5%

Как показали экспериментальные данные, предлагаемые покрытия обеспечивают снижение интегрального коэффициента отражения и повышение интегрального коэффициента пропускания (для двухстороннего покрытия) антибликового экрана, в том числе в условиях высокой освещенности (более 500 лк), без увеличения количества слоев покрытия (4 слоя - для антибликового покрытия, 5 слоев - для антибликового электрообогревного покрытия) и без увеличения количества материалов мишеней для изготовления покрытия (2 мишени - из Ti и Si - для антибликового покрытия, 3 мишени - из Si, Ti и сплава In-Sn - для антибликового электрообогревного покрытия).

1. Антибликовое покрытие подложки, содержащее первый внутренний слой из оксида титана толщиной 10-17 нм, второй слой из оксида кремния толщиной 27-36 нм, третий слой из оксида титана толщиной 102-120 нм и четвертый слой из оксида кремния толщиной 87-95 нм.

2. Антибликовое покрытие подложки, содержащее первый внутренний слой из оксида индия, легированного оловом, толщиной 120-250 нм, второй слой из оксида титана толщиной до 22 нм, третий слой из оксида кремния толщиной 184-210 нм, четвертый слой из оксида титана толщиной 17-100 нм и пятый слой из оксида кремния толщиной 75-125 нм.

3. Антибликовый экран, содержащий нанесенное по крайней мере на одну его сторону антибликовое покрытие, отличающийся тем, что он выполнен из силикатного стекла, при этом в качестве нанесенного покрытия содержит покрытие по п. 1 или 2, при этом силикатное стекло имеет толщину от 1 до 3 мм, собственный коэффициент пропускания не менее 90%, коэффициент отражения с двух граней не более 9%, действительную часть коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм.



 

Похожие патенты:

Офтальмологическая линза содержит прозрачную подложку с передней основной поверхностью и с задней основной поверхностью. По меньшей мере одна из основных поверхностей покрыта многослойным просветляющим покрытием, содержащим набор из по меньшей мере одного слоя с высоким показателем преломления (HI), имеющего показатель преломления, который больше или равняется 1,55, и по меньшей мере одного слоя с низким показателем преломления (LI), имеющего показатель преломления менее 1,55.
Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек путем обезжиривания и промывки в холодной воде, последующее травление в растворе смеси минеральных кислот, нанесение слоя целевого светопоглощающего покрытия, при этом операцию травления поверхности деталей из нержавеющей стали ведут в растворе состава (г/л): кислота азотная 350-400; кислота плавиковая 20-25, при комнатной температуре, в течение не более 20 минут, после чего производят предварительное никелирование в электролите состава (г/л): никель хлористый 200-250; кислота соляная 50-100, при плотности тока 3-5 А/дм2, температуре 15-25°С, в течение 5-15 минут с никелевыми анодами, затем осуществляют процесс гальванического меднения в электролите состава (г/л): медь сернокислая 100-250; кислота серная 50-100; спирт этиловый ректификат 10-30 мл/л, при плотности тока 1,5-2 А/дм2, температуре 15-45°С в течение 4-5 часов, с медными анодами в чехлах, и окончательное целевое покрытие осуществляют путем хромирования в электролите состава (г/л): хромовый ангидрид 250-280; кислота борная 10-15; натрий уксуснокислый 3,0-5,0, при плотности тока 30-75 А/дм2, температуре 15-30°С в течение 5-15 минут с нерастворимыми свинцовыми анодами с получением светопоглощающего слоя.

Изобретение относится к области оптотехники и может быть использовано для создания одинаковых условий высокоточной обработки различных материалов, основанной на применении пучков лазерного излучения.

Изобретение относится к силиконовым акриламидным сополимерам, применимым в медицинских устройствах. Предложен сополимер для использования в офтальмологических линзах, образованный из реакционноспособной смеси, содержащей радикально полимеризуемые компоненты и включающей (A) многофункциональный (мет)акриламидный мономер, имеющий, по меньшей мере, одну силоксановую связь и, по меньшей мере, две (мет)акриламидные группы внутри молекулы, (B) монофункциональный линейный силиконовый (мет)акриламидный мономер и (С) немсиликоновый гидрофильный мономер в качестве компонента сополимеризации.

Изобретение относится к полимерам или гидрогелям, содержащим сульфокислотные группы, и сформированным из них офтальмологическим устройствам. Предложен силиконсодержащий полимер, содержащий сульфокислотный компонент, образованный из реакционно-способных компонентов, содержащих, (i) по меньшей мере, один силиконовый компонент и, (ii) по меньшей мере, один компонент, содержащий сульфокислоту, причем компонент, содержащий сульфокислоту, состоит из соли, образованной неполимеризуемым гидрофильным основанием и полимеризуемой сульфокислотой.

Изобретение относится к области неорганической химии, а именно к способу получения поликристаллов четверных соединений ALnAgS3 (A=Sr, Eu; Ln=Dy, Но) моноклинной сингонии со структурой типа BaErAgS3, которые перспективны для применения в качестве люминофоров, полупроводников и неметаллических ферромагнетиков, оптических материалов.

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов.

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов.

Изобретение относится к легким в использовании силиконовым гидрогелевым контактным линзам, а именно к упаковочному раствору для контактных линз, который представляет собой водный раствор, содержащий по меньшей мере один буферный агент в количестве, достаточном для поддержания значения pH, равного от 6,0 до 8,5 и от 0,01 % до 2 мас.% растворимого в воде и термически сшивающегося гидрофильного полимерного материала; где растворимый в воде и термически сшивающийся гидрофильный полимерный материал содержит (i) от 20% до 95 мас.% первых полимерных цепей, образованных из функционализированного эпихлоргидрином полиамина или полиамидоамина,(ii) от 5% до 80 мас.% гидрофильных фрагментов или вторых полимерных цепей, образованных по меньшей мере из одного увеличивающего гидрофильность агента, содержащего по меньшей мере одну реакционно-способную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, и (iii) положительно заряженные азетидиниевые группы, которые являются частями первых полимерных цепей или боковых или концевых групп, ковалентно связанных с первыми полимерными цепями, где гидрофильные фрагменты или вторые полимерные цепи ковалентно связаны с первыми полимерными цепями с помощью одной или большего количества ковалентных связей, каждая из которых образована между одной азетидиниевой группой функционализированного эпихлоргидрином полиамина или полиамидоамина и одной аминогруппой, карбоксигруппой или тиогруппой увеличивающего гидрофильность агента.

Группа изобретений относится к медицине. Офтальмологическое устройство содержит: гидрогелевую линзу, содержащую оптическую зону и периферическую зону, которая расположена снаружи оптической зоны, два или более выступающих участка, включенных в периферическую зону гидрогелевой линзы; и вкладыш-субстрат, съемным образом закрепленный в оптической зоне гидрогелевой линзы.

Изобретение относится к процессу термодиффузионной обработки изделий в порошковых смесях. Может использоваться для повышения коррозионной стойкости деталей и узлов механизмов, работающих в агрессивных средах, в частности, оборудования нефтяной и газовой промышленности, эксплуатируемого в среде, содержащей сероводород.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия.

Изобретение относится к металлическому компоненту устройства для проведения перегонки и/или ферментации. Металлический компонент устройства для проведения перегонки и/или ферментации характеризуется тем, что активная поверхность указанного компонента покрыта, полностью или частично, по меньшей мере одним слоем наноструктурированной меди.

Изобретение относится к получению полосы из высокомарганцевой стали с антикоррозионным покрытием, обеспечивающим повышение свариваемости полос из высокомарганцевой стали следующего состава (в мас.

Изобретение относится к многослойному покрытию, нанесенному методом физического осаждения, в частности к функциональным покрытиям преимущественно для изделий, таких как режущие и штамповые инструменты, хирургические импланты (эндопротезы), а также пары трения, которые могут быть синтезированы ионно-плазменными методами.

Изобретение относится к способу получения многослойного композитного покрытия на поверхности детали центробежного насоса. Техническим результатом является создание слоистого композита с высокими прочностными характеристиками, обладающего высокой стойкостью к абразивному и кавитационному износу.
Изобретение относится к способу получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов. Способ включает вакуумно-плазменное осаждение легирующих элементов хрома, алюминия и иттрия на поверхность лопаток и термическую обработку.

Изобретение относится к подложке и способу ее изготовления. Подложка содержит множеством слоев, по меньшей мере один из которых включает оксиды металлов и имеет непосредственно поверх себя слой металлического покрытия, которое содержит по меньшей мере 8 масс.

Изобретение относится к металлорежущему инструменту, в частности к режущим пластинам и фрезам, используемым для обработки изделий из трудно обрабатываемых материалов, в том числе из титана и его сплавов.

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO2 толщиной 10-17 нм, второй слой из SiO2 толщиной 27-36 нм, третий слой из TiO2 толщиной 102-120 нм и четвертый слой из SiO2 толщиной 87-95 нм. Антибликовое покрытие содержит первый внутренний слой из ITO толщиной 120-250 нм, второй слой из TiO2 толщиной 0-22 нм, третий слой из SiO2 толщиной 184-210 нм, четвертый слой из TiO2 толщиной 17-100 нм и пятый слой из SiO2 толщиной 75-125 нм. Антибликовый экран представляет собой силикатное стекло с нанесенным по крайней мере на одну его сторону одним из указанных выше покрытием. Силикатное стекло имеет толщину от 1 до 3 мм, собственный коэффициент пропускания не менее 90, коэффициент отражения с двух граней не более 9, действительную часть коэффициента преломления 1,51-1,54 в видимом диапазоне и 1,52-1,53 при длине волны 550 нм. Технический результат - обеспечение снижения интегрального коэффициента отражения и повышение интегрального коэффициента пропускания антибликового экрана, в том числе в условиях высокой освещенности, без увеличения количества слоев покрытия 3 н.п. ф-лы, 7 пр.

Наверх