Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5 Мо, 2,5 - 3,5 W, 0,3 - 1,0 Ti, 0,15 - 0,2 С, 4,0 - 5,0 Со, 1,2-1,6 Re, 0,002 - 0,2 La, 0,05 - 1,0 Zr, 0,002 - 0,2 Nd, 0,002 - 0,2 Y, Ni - остальное. Сплав характеризуется низким содержанием кислорода в сплаве, высокими значениями кратковременной и длительной прочности при температурах 1100 - 1200°С. 2 н.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья по выплавляемым моделям и/или послойного синтезирования, например, заготовок деталей камеры сгорания газотурбинных двигателей (ГТД) с поликристаллической структурой.

Известен интерметаллидный никелевый сплав марки IC221M, предназначенный для отливки деталей ГТД, следующего химического состава, масс. %:

Аl 7,5-8,2
Сr 7,63-8,11
Мо 1,38-1,5
Zr 1,73-2,02
В 0,004-0,008
С 0,012-0,032
Si 0,021-0,055
Fe 0,03-0,15
Ni остальное

(V.K. Sikka, M.L. Santella Processing and operating experience of Ni3Al-based intermetallic alloy IC-221M, 1997; Martin Pohludka, Jitka , Michenka, Miroslav Kursa, , Ivo Szurman Structure and mechanical properties of nickel alloys. Metal 2013. 15. - 17. 5. 2013, Brno, Czech Republic, EU).

Данный сплав имеет невысокое содержание углерода и бора, что негативно влияет на значения кратковременной и длительной прочности при температуре 1100°С.

Известен интерметаллидный никелевый сплав, предназначенный для получения деталей ГТД с поликристаллической структурой методом точного литья по выплавляемым моделям, следующего химического состава, масс. %:

Аl 8,0-9,0
Сг 4, -6,5
W 2,0-4,2
Мо 2,5-4,5
Ti 1,0-2,0
С 0,10-0,18
Hf 0,4-0,6
Ni остальное (RU 2304179 С1, 10.08.2007).

Сплав обладает структурной стабильностью при температурах до 1200°С ввиду высокого содержания γ'-фазы (90% об.). Однако это отрицательно сказывается на его свариваемости и технологичности, что затрудняет получение из сплава сложнофасонных деталей как литьем, так и послойным синтезированием. Кроме того, в синтезированном виде сплав обладает недостаточной пластичностью.

Известен жаропрочный интерметаллидный сплав на основе никеля, предназначенный для получения деталей ГТД, следующего химического состава, масс. %:

Аl 8,3-8,9
Сr 4,5-5,2
W 4,0-4,6
Мо 3,8-4,2
Ti 1,2-1,6
Со 5,4-6,0
Zr 0,05-0,50
С 0,15-0,20
La 0,05-0,25
Y 0,01-0,05
Ni остальное (RU 2569283 C1, 20.11.2015).

Благодаря присутствию кобальта сплав более технологичен при литье с поликристаллической структурой и послойном синтезировании заготовок деталей. Ввиду недостаточного упрочнения у-твердого раствора и границ зерен сплав обладает невысокой длительной прочностью при температуре 1100°С на базе 100 ч.

Наиболее близким аналогом является жаропрочный сплав на основе соединения Ni3Al, предназначенный для получения рабочих лопаток ГТД методом точного литья по выплавляемым моделям, следующего химического состава, масс. %:

Аl 7,7-8,7
Сr 5,0-6,0
Мо 4,5-5,5
W 2,5-3,5
Ti 0,3-0,8
С 0,001-0,02
Со 4,0-6,0
Re 1,2-1,8
La 0,002-0,2
Zr 0,05-0,5
Ni остальное (RU 2256716 C1, 20.07.2005).

Благодаря присутствию рения сплав имеет высокие значения жаропрочности при температурах 1000 - 1050°С на базе 100 ч. Однако низкое содержание углерода негативно влияет на прочность заготовок деталей с поликристаллической структурой, изготавливаемых из сплава методом литья и/или методом послойного синтезирования, в диапазоне температур 1100 - 1200°С, так как границы зерен не укреплены. Недостатком сплава также является высокое содержание кислорода при литье и синтезировании полуфабрикатов, поскольку из связывающих кислород элементов сплав содержит только лантан.

Техническим результатом предлагаемого изобретения является снижение содержания кислорода в сплаве, повышение кратковременной и длительной прочности при температурах 1100 - 1200°С сплава, изготовленного как методом литья, так и послойного синтезирования.

Для достижения поставленного технического результата предложен сплав на основе интерметаллида никеля, содержащий алюминий, хром, молибден, вольфрам, титан, углерод, кобальт, рений, лантан, цирконий, никель, отличающийся тем, он дополнительно содержит неодим и иттрий при следующем соотношении компонентов, масс. %:

Аl 8,1-8,6
Сr 5,6-6,3
Мо 4,5-5,5
W 2,5-3,5
Ti 0,3-1,0
С 0,15-0,2
Со 4,0-5,0
Re 1,2-1,6
La 0,002-0,2
Zr 0,05-1,0
Nd 0,002-0,2
Y 0,002-0,2
Ni основа.

При легировании многокомпонентных жаропрочных никелевых сплавов необходимо соблюдение баланса химического и фазового состава. Баланс легирования рассчитывают по нижеприведенным выражениям. Основными критериями выбора являются условия:

где Ci - содержание i-ro химического элемента в составе композиции сплава, Ai - атомная масса i-ro элемента, Ei - число валентных электронов i-ro химического элемента, - среднее значение электронной концентрации композиции сплава, ΔЕ - величина, определяющая дисбаланс легирования.

В сплавах с отрицательным значением ΔЕ ≤ -0,02 велика вероятность образования ТПУ-фаз, с положительным значением ΔЕ > 0,02 возможно образование соединений на основе Ni3Ti, а также карбидов (Морозова Г.И. Компенсация дисбаланса легирования жаропрочных никелевых сплавов //МиТОМ. 2012. №12., с. 52-58).

Известно, что углерод и такие элементы, как хром, цирконий и титан вступают во взаимодействие, образуя карбиды, укрепляющие границы зерен. Авторами установлено, что на формирование высокотемпературных карбидов перечисленных элементов необходимо 0,1 масс. % хрома (Сr3С2, Тпл.=1985°С), 0,17 масс. % циркония (ZrC, Тпл=3530°С) и 0,24 масс. % титана (TiC, Тпл.=3150°С), соответственно. Таким образом, с учетом образования карбидов, содержание перечисленных карбидообразующих элементов необходимо повысить до заявляемых значений для сохранения сбалансированности химического и фазового состава интерметаллидного сплава.

Алюминий и рений являются одними из самых ликвирующих элементов жаропрочных никелевых сплавов (в зависимости от содержания элементов, коэффициент ликвации KL (Аl)=0,6÷0,7; KL (Re)=1,5÷3,5). Сужение интервала легирования по алюминию и рению позволит снизить вариативность фазового состава и обеспечит также снижение ликвационной неоднородности, свойственной сплавам, легированным тугоплавким элементам.

При отливке деталей с поликристаллической структурой из сплава предложенного состава на границах зерен происходит образование сложных карбидов, содержащих цирконий, молибден, вольфрам и хром, которые будут препятствовать движению дислокаций, ползучести и, следовательно, повысят кратковременную и длительную прочность сплава при температурах 1100-1200°С.

Для получения изделий из сплава методом послойного синтезирования в качестве расходного материала используют порошок фракцией 40-150 мкм, имеющий большую площадь поверхности и, следовательно, содержание кислорода. Поэтому поддержание низкого уровня кислорода является особо важной задачей при изготовлении синтезированных полуфабрикатов. Введение в состав предлагаемого сплава неодима и иттрия, имеющих большое сродство к кислороду, при заявленном содержании приводит к связыванию его в соединения типа Nd2O3 и Y2O3, снижению содержания примеси кислорода и повышению металлургического качества металла, что позволит изготовить плотный полуфабрикат с минимальным содержанием пор.

Химический состав предлагаемого сплава позволяет получить полуфабрикаты с равноосной поликристаллической структурой методом точного литья по выплавляемым моделям и также полуфабрикаты с поликристаллической структурой методом послойного синтезирования.

Сплав с равноосной поликристаллической структурой обладает жаропрочностью при температуре 1100°С на базе 100 ч σ1100100=43 МПа, при температуре 1200°С на базе 100 ч σ1200100=20 МПа, кратковременной прочностью при 1100°С σ1100в =340 МПа, при 1200°С - σ1200в=170 МПа.

Примеры осуществления.

Вакуумным индукционным методом в установке ВИАМ-2002 были выполнены три плавки предлагаемого сплава и одна плавка сплава, взятого за прототип.

Содержание легирующих элементов определяли атомно-эмиссионным анализом, содержание углерода и примеси кислорода - газовым анализом, содержание примесей, таких как, сурьма, марганец, железо, висмут, олово, свинец, кремний определяли методом масс-спектрометрического анализа. Результаты химического анализа составов предлагаемого сплава и сплава-прототипа приведены в таблице 1.

Каждая плавка была разделена на две заготовки.

Далее расплавленный металл заливали в керамические формы, изготовленные из одноразовых выплавляемых восковых моделей, и осуществляли переплав первой серии заготовок (метод точного литья по выплавляемым моделям).

Из второй серии заготовок получали образцы сплава путем послойного синтезирования мелкодисперной порошковой композиции сплава электронными пучками высокой мощности в вакууме (метод электронно-лучевого сплавления ЭЛС).

Испытания на жаропрочность определяли стандартным методом по ГОСТ 10145-81, на кратковременную прочность - по ГОСТ 9651-84.

Свойства предлагаемого сплава и сплава-прототипа, полученных разными способами (методом точного литья по выплавляемым моделям и послойного синтезирования) приведены в таблице 2.

Известно, что литой сплав содержит меньшее, чем синтезированный материал, количество кислорода. Из таблицы 2 видно, что содержание кислорода в сплаве предложенного химического состава ниже в ~2 раза, чем в сплаве-прототипе, как в литом варианте, так и синтезированном.

Сравнивая свойства сплавов, отметим, что сплав предложенного химического состава имеет преимущества перед сплавом-прототипом:

- жаропрочность сплава с равноосной структурой при температуре 1100°С на базе 100 часов (σ1100100) находится на одном уровне, жаропрочность при температуре 1200°С на базе 100 часов (σ1200100) превышает показатель сплава-прототипа в 1,8-2,2 раза, кратковременная прочность при температуре 1100°С (σ1100в) повышена на 36-38%, кратковременная прочность при температуре 1200°С (σ1200в) повышена на 6-13%;

- жаропрочность сплава предложенного состава в синтезированном виде при температуре 1100°С на базе 100 часов (σ1100100) превышает показатель сплава-прототипа на 67-80%, при температуре 1200°С на базе 100 часов (σ1200100) в 3-3,6 раза; кратковременная прочность при температуре 1100°С (σ1100в) повышена на 35-39%, кратковременная прочность при температуре 1200°С (σ1200в) повышена на 14-18%.

Использование предлагаемого жаропрочного интерметаллидного сплава позволит повысить рабочие температуры и надежность, снизить вес статорных деталей, таких как элементы камеры сгорания.

1. Сплав на основе интерметаллида никеля, содержащий алюминий, хром, молибден, вольфрам, титан, углерод, кобальт, рений, лантан, цирконий, никель, отличающийся тем, что он дополнительно содержит неодим и иттрий при следующем соотношении компонентов, мас.%:

Al 8,1-8,6
Cr 5,6-6,3
Мо 4,5-5,5
W 2,5-3,5
Ti 0,3-1,0
С 0,15-0,2
Со 4,0-5,0
Re 1,2-1,6
La 0,002-0,2
Zr 0,05-1,0
Nd 0,002-0,2
Y 0,002-0,2
Ni остальное.

2. Изделие из интерметаллидного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения.

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150 мкм, стадию получения целевого продукта, заключающуюся в проведении термовакуумной обработки в течение 3-4 ч при остаточном давлении 10-5-10-6 мм рт.ст., температуре 800-900°С и скорости нагрева до данной температуры 15-20°С/мин и последующей плазменной сфероидизации, при этом оставшийся после предварительного выделения заданной фракции более мелкий и более крупный порошок подвергают перемешиванию, прессованию, вакуумному спеканию до относительной плотности 70-80%, размолу, после чего полученный порошок возвращают на стадию предварительного выделения заданной фракции и далее выделенную заданную фракцию направляют на стадию получения целевого продукта.

Изобретение может быть использовано в металлургии. Подготовка оснастки для выплавки литых прутковых заготовок из жаропрочных сплавов на никелевой основе включает отбор труб с дефектами на внутренней поверхности, их термическую обработку в колпаковой печи с использованием опорного вертикального устройства с газопроницаемой прокладкой и механическую чистку внутренней поверхности труб.

Изобретение относится к области металлургии, в частности к сварочному материалу на основе никеля, и может быть использовано при сварке жаропрочных сплавов на основе никеля и кобальта.

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при температурах 600-900°С.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, например рабочих лопаток газовой турбины с равноосной или монокристаллической структурой, работающих в агрессивных средах при рабочих температурах 750-900°С.

Изобретение относится к порошковой металлургии, в частности к изготовлению высоконагруженных составных дисков с функционально градиентными свойствами для газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению.

Изобретение относится к области металлургии, в частности к способам термомеханической обработки супераустенитных нержавеющих сталей. Способ обработки супераустенитной нержавеющей стали включает нагрев стали до рабочего диапазона температур от температуры рекристаллизации до температуры ниже начальной температуры плавления стали, обработку стали давлением в рабочем диапазоне температур, нагрев стали до температуры в рабочем диапазоне температур, при этом супераустенитная нержавеющая сталь не охлаждается до температуры ниже рабочего диапазона температур в течение периода времени от упомянутой обработки стали давлением до нагрева по меньшей мере поверхностной области.

Изобретение относится к металлургии, а именно к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок с монокристаллической структурой, длительно работающих в агрессивных средах при температурах до 700-1000°С.

Изобретение относится к получению горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе. Шихта содержит нанопорошки никеля (Ni) и молибдена (Мо), порошок дисульфида молибдена (MoS2) и порошок меди (Cu).

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С.

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения.

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения.

Изобретение относится к получению тройного сплава Ni-Cr-C. Способ включает нагрев исходной смеси порошков микронных размеров, состоящей из 25-45 мас.% хрома, 3-5 мас.% графита и остальное никеля, и ее последующее охлаждение.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С.

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150 мкм, стадию получения целевого продукта, заключающуюся в проведении термовакуумной обработки в течение 3-4 ч при остаточном давлении 10-5-10-6 мм рт.ст., температуре 800-900°С и скорости нагрева до данной температуры 15-20°С/мин и последующей плазменной сфероидизации, при этом оставшийся после предварительного выделения заданной фракции более мелкий и более крупный порошок подвергают перемешиванию, прессованию, вакуумному спеканию до относительной плотности 70-80%, размолу, после чего полученный порошок возвращают на стадию предварительного выделения заданной фракции и далее выделенную заданную фракцию направляют на стадию получения целевого продукта.

Изобретение относится к области металлургии, в частности к сварочному материалу на основе никеля, и может быть использовано при сварке жаропрочных сплавов на основе никеля и кобальта.

Изобретение относится к области металлургии, в частности к сварочному материалу на основе никеля, и может быть использовано при сварке жаропрочных сплавов на основе никеля и кобальта.

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при температурах 600-900°С.

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при температурах 600-900°С.

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе Ni3Al содержит, масс.%: Al 8,2-8,8, Cr 4,5÷5,5, W 4,4÷4,8, Мо 3,2÷3,8, Ti 1,0÷1,6, Hf 0,4÷0,8, Al2O3-Y2O3 или Al2O3-Y2O3-HfO2 2,0-5,0, Ni - остальное. Предложен также способ получения указанного материала, включающий вакуумную индукционную выплавку интерметаллидного матричного сплава, распыление его на порошок, перемешивание в высокоэнергетической установке интерметаллидного порошка и частиц оксидов, сфероидизацию, компактирование. После чего проводят горячее изостатическое прессование с последующей горячей экструзией или гибридное искровое плазменное спекание с дальнейшим горячим изостатическим прессованием. Изобретение обеспечивает металлокерамический композиционный материал с повышенной прочностью при изгибе, по длительности во времени до разрушения при 1200°С, а также с повышенной ударной вязкостью и кратковременной прочностью при растяжении при комнатной температуре и при 1200°С при плотности менее 8,0 г/см3. 2 н. и 4 з.п. ф-лы, 2 табл., 6 пр.

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5 Мо, 2,5 - 3,5 W, 0,3 - 1,0 Ti, 0,15 - 0,2 С, 4,0 - 5,0 Со, 1,2-1,6 Re, 0,002 - 0,2 La, 0,05 - 1,0 Zr, 0,002 - 0,2 Nd, 0,002 - 0,2 Y, Ni - остальное. Сплав характеризуется низким содержанием кислорода в сплаве, высокими значениями кратковременной и длительной прочности при температурах 1100 - 1200°С. 2 н.п. ф-лы, 2 табл., 3 пр.

Наверх