Магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов

Изобретение относится к судовым реактивным движителям. Магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов выполнен в виде двух цилиндрических труб вложенных друг в друга с ортогонально размещёнными электромагнитами. Электромагниты на внешней трубе расположены попарно с электромагнитами на внутренней трубе для формирования магнитного поля. При пошаговом изменении силы тока в электромагнитах будет изменяться скорость истечения жидкости в зависимости от выбранного направления движения. Причем, так как масса выталкиваемой жидкости будет превышать массу самого двигателя, вода будет оставаться неподвижной, а сам двигатель приобретет вращательно-поступательное движение с возможностью программно-управляемого маневрирования в любом направлении. Технический результат заключается в том, что сам двигатель вместе с микродроном приобретает вращательно-поступательное движение. 1 ил.

 

Изобретение относится к движителям и может быть использовано на морских судах.

Недостатком известных устройств [1-3] является перемещение водного потока, что приводит к возникновению паразитных вихревых потоков и энергетическим потерям.

Целью предлагаемого изобретения является увеличение мощности и управляемости магнитогидродинамического программно-управляемого шагового двигателя для морских микродронов.

Техническим результатом является воздействие магнитным полем на анионы и катионы морской воды таким образом, что сам двигатель вместе с микродроном приобретет вращательно-поступательное движение, а сама морская вода будет оставаться практически неподвижной.

Указанный технический результат достигается тем, что магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов выполняется в виде двух цилиндрических труб вложенных друг друга с ортогонально размещенными электромагнитами и при пошаговом изменении силы тока в электромагнитах будет изменяться скорость истечения жидкости в зависимости от выбранного направления движения, причем, так как масса выталкиваемой жидкости будет превышать массу самого двигателя, вода будет оставаться неподвижной, а сам двигатель приобретет вращательно-поступательное движение с возможностью программно-управляемого маневрирования в любом направлении.

На фиг. 1 изображена схема магнитогидродинамического программно-управляемого шагового двигателя для морских микродронов. Металлический цилиндрический электрод 1 соединен с положительным полюсом источника питания, а металлический цилиндрический электрод 2 соединен с отрицательным полюсом источника питания. Под действием этих потенциалов положительные анионы в морской воде будут двигаться по радиальным направлениям от положительного электрода к отрицательному. Отрицательные катионы будут двигаться им навстречу. Шаговые электромагниты 3 на внешней трубе, расположены попарно с такими же электромагнитами 4 на внутренней трубе для формирования магнитного поля, которое при помощи силы Лоренца будет создавать взаимное отталкивание внешней и внутренней труб относительно анионов и катионов. Программное переключение электромагнитов приведет к возможности создания кругового перемещения импульса выталкивания. Если обе трубы закреплены, то в этом случае возникает вихревое движение жидкости с одновременным ее выталкиванием из пространства между внешней и внутренней трубой. Если же трубы не закреплены и масса двигателя меньше массы выталкиваемой воды, то вода будет оставаться практически неподвижной, а двигатель приобретет вращательно-поступательное движение. Управление скоростью вращения можно запрограммировать, изменяя скорость пошагового переключения электромагнитов, а изменяя величину потенциала на электродах и ток в шаговых электромагнитах, можно изменять скорость поступательного движения. Программно можно задавать, как поочередное одиночное включение пары ортогональных электромагнитов при выключенных всех остальных электромагнитах, так и увеличить количество включенных пар ортогональных электромагнитов до значения, при котором все электромагниты включены и по очереди по кругу каждая пара последовательно отключается. Если при переключении программно изменять силу тока в паре ортогональных электромагнитов таким образом, что в каком-либо секторе сила тока будет больше, чем в противоположном секторе, то в этом случае можно управлять не только скоростью вращения и поступательного движения, но и изменять произвольно вектор движения.

Так как, в движении участвует только сам микродрон с двигателем в виде цилиндрической трубы, а водная среда остается практически неподвижной, то это позволит осуществить практически бесшумное перемещение, а фактор малошумности имеет большое значение для военного применения и экологической безопасности.

Магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов способен работать на любых глубинах и при любых климатических условиях с высокой энергоэффективностью и управляемостью.

Литература

1. Патент РФ №2327597. Электромагнитный движитель / Герасимов Н.П., Легуша Ф.Ф., Поляшев Б.М.

2. Патент РФ №2271302. Способ перемещения тела в морской воде и устройство для его реализации / Дозоров Т.А., Смирнов Г.В.

3. Патент РФ №2280587. Движитель для перемещения судна в морской воде / Дозоров Т.А.

Магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов, выполненный в виде двух цилиндрических труб, вложенных друг в друга с ортогонально размещёнными электромагнитами, отличающийся тем, что при пошаговом изменении силы тока в электромагнитах будет изменяться скорость истечения жидкости в зависимости от выбранного направления движения, причем, так как масса выталкиваемой жидкости будет превышать массу самого двигателя, вода будет оставаться неподвижной, а сам двигатель приобретет вращательно-поступательное движение с возможностью маневрирования в любом направлении.



 

Похожие патенты:

Изобретение относится к пневмоаккумуляторной станции. Пневмоаккумуляторная электростанция содержит электрический входной/выходной контур, компрессорные и расширительные средства и искусственно изготовленный пневмоаккумулятор.

Изобретение относится к пневмоаккумуляторной станции. Пневмоаккумуляторная электростанция содержит электрический входной/выходной контур, компрессорные и расширительные средства и искусственно изготовленный пневмоаккумулятор.

Изобретение относится к электротехнике и может быть использовано в магнитогидродинамических генераторах. Технический результат заключается в повышении КПД, надежности и долговечности.

Изобретение относится к электротехнике, а именно к магнитной гидродинамике, и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике.

Изобретение относится к электротехнике, а именно к прямому преобразованию потоков жидкостей и газов в трубопроводах в электрическую энергию, и может быть использовано для питания датчиков и приборов, установленных на трубопроводах в труднодоступных для централизованного энергоснабжения и удаленных районах нефтедобычи и нефте-газоперекачки и передачи информации по измеряемым параметрам.

Изобретение относится к средствам питания скважинной аппаратуры. Техническим результатом является повышение надежности и ресурса работы устройства, а также упрощение конструкции и его эксплуатации.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку.

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности.

Изобретение относится к электротехнике, к производству электрической энергии на основе магнитогидродинамического эффекта и может быть использовано в устройствах обработки информации или приемо-передающих устройствах, размещаемых на объектах, движущихся с ускорением.

Изобретение относится к электротехнике, к магнитной гидродинамике, к электромагнитным насосам и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике.

Изобретение относится к электротехнике и может быть использовано в системах автоматического управления дискретным электроприводом. Технический результат состоит в повышении технологичности.

Изобретение относится к электротехнике, к дискретным электроприводам. .

Изобретение относится к области физики и электроники и может быть использовано в качестве прецизионного устройства микроповорота оси вращения, а также модели электромагнитного движителя типа сегнерова колеса, но без выброса наружу реактивных масс.

Изобретение относится к электротехнике, к шаговым электродвигателям и может быть использовано в дискретных электроприводах в робототехнике и системах автоматики.

Изобретение относится к электротехнике и предназначено для использования в робототехнике и системах автоматики для регулирования шагового перемещения. .

Изобретение относится к электротехнике и предназначено для дискретных электроприводов. .

Изобретение относится к электротехнике и может быть использовано в робототехнике и системах автоматики для регулирования шагового перемещения. .

Изобретение относится к области электротехники, а именно к электрическим машинам, предназначенным для использования в качестве двигателей или генераторов. .

Изобретение относится к области электротехники, а именно - к электрическим машинам, предназначенным для использования в качестве двигателей или генераторов. .

Изобретение относится к системе для накопления энергии, которая предназначена для привода транспортного средства. .

Изобретение относится к движителям и может быть использовано на морских судах. Магнитогидродинамический программно-управляемый вихревой двигатель для морских микродронов выполнен в виде двух цилиндрических металлических электродов, вложенных друг в друга, с тремя электромагнитами.
Наверх