Способ изготовления труб нефтяного сортамента (варианты)

Изобретение относится к металлургии, а именно к производству бесшовных горячекатаных труб из среднеуглеродистой низколегированной стали, которые предназначены для обустройства нефтяных и газовых скважин. Способ изготовления труб нефтяного сортамента включает горячую деформацию стальной трубной заготовки из стали, содержащей компоненты в следующем соотношении, мас.%: 0,27-0,38 углерода, 0,15-0,37 кремния, 0,85-1,75 марганца, не более 0,30 хрома, не более 0,30 никеля, не более 0,30 меди, 0,02-0,17 ванадия, 0,02-0,05 алюминия, не более 0,015 серы, не более 0,020 фосфора, железо и неизбежные примеси - остальное. Для обеспечения высоких прочностных свойств труб упрочняющую обработку труб проводят по одному варианту путем закалки с температуры нагрева в интервале Ас3÷(Ас3 + 30)°C и последующего отпуска при температуре от 500°C до Ac1 с отдельного печного нагрева, а по другому варианту при термомеханической обработке в линии трубопрокатного агрегата осуществляют окончание деформации при температуре выше верхней критической температуры Ar3 и последующее охлаждение труб на воздухе. 2 н. и 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к металлургии, а именно к производству бесшовных горячекатаных труб из среднеуглеродистой низколегированной стали, которые предназначены для обустройства нефтяных и газовых скважин.

Для производства труб нефтяного сортамента в обычном исполнении допускается применение различных химических составов стали и видов их упрочняющей обработки. Так, согласно действующим стандартам (ГОСТ Р 53366, APISpec5CT) для труб с пределом текучести до 965 МПа введены ограничения лишь по содержанию вредных примесей (сера не более 0,03 мас. %, фосфор не более 0,03 мас. %) и определены требуемые прочностные свойства, которые могут быть достигнуты путем термомеханической обработки в линии трубопрокатного агрегата или закалки с отпуском с отдельного печного нагрева.

Термомеханической обработке в линии трубопрокатного агрегата подвергают среднеуглеродистые стали, как правило, легированные марганцем 0,7-1,2 мас. % и/или хромом до 1,2 мас. % (патент РФ №2336335, C21D 8/10, С22С 38/60, опубл. 20.10.2008; патент РФ №2336331, C21D 8/10, С22С 38/60, опубл. 20.10.2008). Известны более легированные марки стали 38Г2С, 48Г2БМ и 37ХГ, содержащие примерно по 0,6 мас. % хрома и марганца, дополнительно ванадий, ниобий и молибден, предназначенные для изготовления труб, предел текучести которых после термомеханической обработки составляет 460-610 МПа (Разработка сталей и режимов производства насосно-компрессорных и обсадных труб / П.Ю. Горожанин, Е.С Черных, В.А. Хотинов и др. // Известия ВУЗов. Черная металлургия - 2007, №8, С. 44-46).

Недостаток сталей указанных химических составов для изготовления труб состоит в том, что их нельзя применять для труб, подвергаемых как термомеханической обработке в линии трубопрокатного агрегата, так и закалке с отпуском из-за несбалансированного состава упрочняющих и легирующих элементов, а именно содержания углерода, марганца и кремния.

Известна сталь 35Г по ГОСТ 4543 следующего химического состава, мас. %: 0,32-0,40 углерод; 0,17-0,37 кремний; 0,7-1,0 марганец; не более 0,3 никель, хром и медь; не более 0,035 сера и фосфор, из которой возможно изготовление труб, однако уровень прочностных свойств труб после проведения закалки с последующим отпуском не соответствует высокопрочному состоянию.

Известна труба нефтяного сортамента, выполненная из подвергнутой закалке и отпуску низколегированной стали следующего химического состава, мас. %: 0,28-0,34 углерод; 0,15-0,37 кремний; 0,9-1,2 марганец; 0,02-0,05 алюминий; не более 0,25 хром, никель и медь; не более 0,010 сера; не более 0,015 фосфор; не более 0,012 азот (пат. №2552794, С22С 38/04, С22С 38/06, опубл. 10.06.2015). Данные трубы обладают высокими прочностными свойствами после закалки и отпуска, но указанный химический состав не обеспечивает получения высоких прочностных свойств при проведении термомеханической обработки в линии трубопрокатного агрегата.

Наиболее близким к заявляемому изобретению является способ производства труб из стальной заготовки, принятый за прототип, включающий горячую деформацию и термомеханическую обработку в линии трубопрокатного агрегата при следующем содержании химических элементов в стали, мас. %:

углерод 0,37-0,39,
кремний 0,40-0,53,
марганец 1,30-1,42,
хром не более 0,30,
никель не более 0,30,
медь не более 0,30,
ванадий 0,04-0,05,
сера не более 0,030,
фосфор не более 0,030,
железо и неизбежные примеси остальное,

с формированием предела текучести 521-589 МПа (Разработка технологии термомеханической обработки с межклетьевым охлаждением труб / Д.В. Овчинников, Н.Т. Тихонцева, М.Н. Лефлер и др. // Инновационные технологии в металлургии и машиностроении: материалы 6-й международной молодежной научно-практической конференции «Инновационные технологии в металлургии и машиностроении. Уральская научно-педагогическая школа им. профессора А.Ф. Головина», [г. Екатеринбург, 29 октября - 1 ноября 2012 г.]. - Екатеринбург: Изд-во Уральского университета, 2012, с. 162-164).

Недостаток данного способа состоит в том, что он не позволяет обеспечить высокий уровень прочностных свойств при проведении термомеханической обработки и отсутствует возможность проведения закалки с отпуском для повышения прочности трубы ввиду высокого содержания углерода в стали. Кроме того, содержание кремния в количестве более 0,40 мас. % оказывает отрицательное влияние на вязко-пластичные свойства металла и способствует развитию необратимой отпускной хрупкости стали.

Техническая задача, на решение которой направлено предлагаемое изобретение, заключается в обеспечении высоких прочностных свойств бесшовных труб из среднеуглеродистой низколегированной стали за счет различных видов упрочняющей обработки.

Поставленная задача по первому варианту решается за счет того, что в способе изготовления труб нефтяного сортамента, включающем горячую деформацию стальной трубной заготовки и термическое упрочнение труб, согласно изобретению, труба получена из стали, содержащей компоненты в следующем соотношении, мас. %:

углерод 0,27-0,38,
кремний 0,15-0,37,
марганец 0,85-1,75,
хром не более 0,30,
никель не более 0,30,
медь не более 0,30,
ванадий 0,02-0,17,
алюминий 0,02-0,05,
сера не более 0,015,
фосфор не более 0,020,
железо и неизбежные примеси остальное,

а термическое упрочнение труб проводят путем закалки с температуры нагрева в интервале Ас3÷(Ас3÷30)°C и последующего отпуска при температуре от 500°C до Ac1 с отдельного печного нагрева. Кроме того, в процессе закалки осуществляют равномерное струйное охлаждение труб с их вращением.

Поставленная задача по второму варианту решается за счет того, что в способе изготовления труб нефтяного сортамента, включающем горячую деформацию стальной трубной заготовки и термическое упрочнение труб в линии трубопрокатного агрегата путем термомеханической обработки, согласно изобретению, труба получена из стали, содержащей компоненты в следующем соотношении, мас. %:

углерод 0,27-0,38,
кремний 0,15-0,37,
марганец 0,85-1,75,
хром не более 0,30,
никель не более 0,30,
медь не более 0,30,
ванадий 0,02-0,17,
алюминий 0,02-0,05,
сера не более 0,015,
фосфор не более 0,020,
железо и неизбежные примеси остальное,

причем при термомеханической обработке осуществляют окончание деформации при температуре выше верхней критической температуры Ar3 и последующее охлаждение труб на воздухе.

Высокий уровень прочностных свойств обеспечивается за счет предлагаемого соотношения содержания химических элементов в стальной заготовке и технологических режимов упрочняющей обработки. Сбалансированный химический состав стальной заготовки (по содержанию углерода, марганца и кремния) позволяет использовать более широкий арсенал упрочняющих видов обработки - как термомеханическую обработку в линии трубопрокатного агрегата, так и закалку с отпуском с отдельного печного нагрева.

Содержание углерода в количестве 0,27-0,38 мас. % и марганца в количестве 0,85-1,75 мас. % необходимо для получения требуемого уровня прочностных свойств. При содержании углерода более 0,38 мас. % исключена возможность проведения закалки в воде ввиду образования закалочных трещин.

Марганец является экономически дешевым легирующим элементом, повышающим прочность и твердость стали, однако при содержании более 1,75 мас. % развивается значительная химическая ликвация, сопровождающаяся структурной неоднородностью по объему металлоизделия, что снижает пластичность стали.

Кремний является постоянной примесью, в количестве 0,15-0,37 мас. % обеспечивает необходимую степень раскисления стали при выплавке и не оказывает отрицательного влияния на вязко-пластичные свойства. Известно, что повышенное содержание кремния смещает температурный диапазон проявления необратимой отпускной хрупкости, присущей практически всем сталям, в область повышенных температур, и в случае нагрева при отпуске до температур в интервале 500°C возможно развитие процессов межзеренного охрупчивания с необратимым снижением вязкости стали.

Необходимо ограничение содержания в стали вредных примесей: серы не более 0,015 мас. % и фосфора не более 0,020 мас. %, поскольку сера снижает способность стали воспринимать горячую пластическую деформацию, а наличие фосфора приводит к образованию сегрегации по границам зерен, что снижает вязкость стали.

Введение ванадия в количестве 0,02-0,17 мас. % позволяет повысить прочность и сформировать мелкое зерно аустенита, что положительно влияет на вязкость горячекатаной трубы и повышает устойчивость закаленной структуры к разупрочнению при отпуске. Содержание ванадия более 0,17 мас. % ведет к образованию излишнего количества карбонитридной фазы, которая понижает пластичность стали.

Алюминий в количестве 0,02-0,05 мас. % необходим для раскисления стали при выплавке. При недостаточной степени раскисления стали оставшийся кислород, вступая в реакцию с железом с образованием оксида (FeO), охрупчивает сталь в процессе горячей деформации.

Хром, никель и медь в незначительных количествах оказывают положительное влияние на прочностные и вязко-пластичные свойства стали после закалки с отпуском, но введение каждого элемента в сталь, предназначенную для производства труб в обычном исполнении, без специальных требований к хладостойкости или коррозионной стойкости, в количестве более 0,30 мас. % является экономически нецелесообразным.

Применение различных видов упрочняющей обработки труб из предлагаемой стали обусловлено гарантированным получением требуемых прочностных свойств с учетом минимизации затрат на производство труб.

Трубы с пределом текучести 758 МПа и менее, что соответствует группам прочности К72, N80 тип 1 по ГОСТ Р 53366-2009, API Spec 5СТ и группам прочности К, Е по ГОСТ 633-80, целесообразно получать в линии трубопрокатного агрегата путем термомеханической обработки с деформацией заготовки, например в редукционном или калибровочном станах в аустенитном состоянии с окончанием деформации при температуре выше верхней критической температуры Ar3 и последующим охлаждением труб на воздухе. Применение данного вида обработки среднеуглеродиетой стали для получения требуемых прочностных свойств обеспечивает формирование однородной, преимущественно перлитной структуры с небольшой долей избыточного феррита, исключая образование разнозернистой структуры со следами перегрева.

Для получения труб с пределом текучести до 965 МПа, что соответствует группам прочности R95, С95, Р110 по ГОСТ Р 53366-2009, API Spec 5СТ и группам прочности Л, М по ГОСТ 632-80, ГОСТ 633-80, а также при наличии в нормативной документации на изготовление труб требований к проведению термической обработки (например, обеспечение групп прочности N80 тип Q по ГОСТ Р 53366-2009 или API Spec 5СТ) после деформации заготовки осуществляют закалку с последующим отпуском с отдельного печного нагрева. При этом для среднеуглеродистых сталей нагрев под закалку необходимо проводить в интервале температур от Ас3 до (Ас3 +30)°C. В результате такой закалки с последующим отпуском с отдельного печного нагрева в диапазоне температур от 500°C до Ac1 формируется однородная структура сорбита отпуска, обеспечивающая требуемый уровень прочностных свойств. Причем при закалке необходимо обеспечить равномерное охлаждение, например при помощи спрейерных установок с наружным струйным охлаждением и вращением трубы для минимизации коробления трубы и исключения образования закалочных трещин.

В производственных условиях ПАО «Синарский трубный завод» по предлагаемому способу было освоено изготовление бесшовных обсадных и насосно-компрессорных труб с получением требуемого уровня прочностных свойств в линии трубопрокатных агрегатов ТПА-140, ТПА-80 или в результате улучшения (закалки с отпуском) на участках термической обработки, в состав оборудования которых входят: печи нагрева проходные, радиальный спрейер с наружным струйным водяным охлаждением и с организацией вращения трубы при закалке.

Промышленное освоение проведено при изготовлении пяти вариантов труб:

1 вариант - бесшовная труба размером 73,02×5,51 мм, из стали содержащей, мас. %: 0,35 углерода, 0,23 кремния, 1,37 марганца, 0,08 хрома, 0,11 никеля, 0,18 меди, 0,08 ванадия, 0,03 алюминия, 0,005 серы и 0,010 фосфора, подвергнута термомеханической обработке с окончанием деформации при температуре 875-890°C и последующему охлаждению труб на воздухе, группы - прочности К72 по ГОСТ Р 53366-2009;

2 вариант - бесшовная труба размером 73×5,5 мм, из стали содержащей, мас. %: 0,33 углерода, 0,22 кремния, 1,32 марганца, 0,06 хрома, 0,13 никеля, 0,19 меди, 0,08 ванадия, 0,02 алюминия, 0,003 серы и 0,008 фосфора, подвергнута термомеханической обработке с окончанием деформации при температуре 883-910°C и последующему охлаждению труб на воздухе, группы прочности Е по ГОСТ 633-80;

3 вариант - бесшовная труба размером 73,02×5,51 мм, из стали содержащей, мас. %: 0,34 углерода, 0,24 кремния, 1,34 марганца, 0,12 хрома, 0,10 никеля, 0,22 меди, 0,08 ванадия, 0,02 алюминия, 0,004 серы и 0,013 фосфора, подвергнута горячей деформации и термическому упрочнению по схеме: закалка с температуры нагрева 820°C и отпуск при температуре 680°C, группы прочности N80 тип Q по ГОСТ Р 53366-2009;

4 вариант - бесшовная труба размером 168,28×8,94 мм, из стали содержащей, мас. %: 0,35 углерода, 0,21 кремния, 1,32 марганца, 0,09 хрома, 0,10 никеля, 0,14 меди, 0,08 ванадия, 0,02 алюминия, 0,003 серы и 0,006 фосфора, подвергнута горячей деформации и термическому упрочнению по схеме: закалка с температуры нагрева 820°C и отпуск при температуре 640°C, группы прочности Р 110 по ГОСТ Р 53366-2009.

5 вариант - бесшовная труба размером 73,02×5,51 мм, из стали содержащей, мас. %: 0,34 углерода, 0,24 кремния, 1,34 марганца, 0,12 хрома, 0,10 никеля, 0,22 меди, 0,08 ванадия, 0,02 алюминия, 0,004 серы и 0,013 фосфора, подвергнутая горячей деформации и термическому упрочнению по схеме: закалка с температуры нагрева 820°C и отпуск при температуре 550°C, группы прочности Р110 по ГОСТ Р 53366-2009.

Также была изготовлена бесшовная насосно-компрессорная труба в соответствии с прототипом размером 73×5,5 мм из стали, содержащей мас. %: 0,38углерода, 0,52 кремния, 1,34 марганца, 0,11 хрома, 0,03 никеля, 0,08 меди, 0,04 ванадия, 0,03 алюминия, 0,008 серы и 0,011 фосфора, подвергнутая горячей деформации с организацией термомеханической обработки без поддержания определенной температуры конца деформации (фактические значения находились в диапазоне от 750 до 810°C). По химическому составу эта труба отличается повышенным содержанием углерода, кремния и более низким содержанием ванадия по сравнению с предлагаемой трубой. При этом уровень механических свойств трубы после горячей деформации с проведением термомеханической обработки находится на уровне группы прочности К (и не более) по ГОСТ 633-80.

От каждого варианта труб проводили отбор образцов для оценки механических свойств (σв, σт, δ) и микроструктуры металла труб после различных видов упрочняющей обработки. Результаты механических испытаний приведены в таблице.

Трубы после термомеханической обработки обладают стабильным уровнем прочностных свойств и имеют равномерную феррито-перлитную микроструктуру с объемной долей феррита до 30% и размером действительного зерна - 10 балл.

В результате проведения закалки с последующим отпуском обеспечивается значительный прирост прочностных свойств труб, достигающий группы прочности Р110 с пределом текучести 965 МПа и менее, за счет обеспечения микроструктуры металла труб в улучшенном состоянии в виде мелкодисперсного сорбита отпуска.

Предлагаемый способ производства бесшовных труб нефтяного сортамента из среднеуглеродистой низколегированной стали обеспечивает высокий стабильный уровень механических свойств как после проведения термомеханической обработки, так и после улучшения, включающего закалку и отпуск с отдельного печного нагрева.

1. Способ изготовления бесшовной стальной трубы нефтяного сортамента, включающий

горячую деформацию трубной заготовки из стали, содержащей, мас.%:

углерод 0,27-0,38
кремний 0,15-0,37
марганец 0,85-1,75
хром не более 0,30
никель не более 0,30
медь не более 0,30
ванадий 0,02-0,17
алюминий 0,02-0,05
сера не более 0,015
фосфор не более 0,020
железо и неизбежные примеси остальное,

охлаждение,

закалку стальной трубы путем нагрева до температуры Ас3÷(Ac3+30)°С и охлаждения,

последующий отпуск при температуре от 500°С до Ac1 с отдельного печного нагрева.

2. Способ по п. 1, в котором при закалке осуществляют равномерное струйное охлаждение труб с их вращением после нагрева.

3. Способ изготовления бесшовной стальной трубы нефтяного сортамента, включающий

горячую деформацию трубной заготовки из стали, содержащей, мас.%:

углерод 0,27-0,38
кремний 0,15-0,37
марганец 0,85-1,75
хром не более 0,30
никель не более 0,30
медь не более 0,30
ванадий 0,02-0,17
алюминий 0,02-0,05
сера не более 0,015
фосфор не более 0,020
железо и неизбежные примеси остальное,

термомеханическую обработку стальной трубы в линии трубопрокатного агрегата, при этом окончание деформации при термомеханической обработке осуществляют при температуре выше верхней критической температуры Ar3, но не более 910°С, и

последующее охлаждение труб на воздухе.



 

Похожие патенты:

Изобретение относится к способу изготовления высокопрочного стального листа с покрытием, имеющего улучшенную пластичность и формуемость, при этом стальной лист с покрытием имеет предел текучести YS по меньшей мере 800 МПа, предел прочности при растяжении TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, посредством термической обработки и нанесения покрытия на лист, выполненный из стали, имеющей следующий химический состав, мас.

Изобретение относится к стальному листу с покрытием, изготовленным из стали, имеющей химический состав, включающий в себя, мас. %: 0,34% ≤ C ≤ 0,40%, 1,50% ≤ Mn ≤ 2,30%, 1,50 ≤ Si ≤ 2,40%, 0,35% ≤ Cr ≤ 0,45%, 0,07% ≤ Мо ≤ 0,20%, 0,01% ≤ Al ≤ 0,08% и 0% ≤ Nb ≤ 0,05%, остальное Fe и неизбежные примеси, при этом стальной лист с покрытием имеет структуру, включающую в себя по меньшей мере 60% мартенсита и 12-15% остаточного аустенита, причем стальной лист с покрытием является оцинкованным, а также стальной лист с покрытием имеет предел прочности по меньшей мере 1470 МПа и общее удлинение по меньшей мере 16%.
Группа изобретений относится к деформационно-упрочненному компоненту, выполненному из гальванизированной стали, способу получения стальной полосы, подходящей для деформационного упрочнения компонентов, и способу получения деформационно-упрочненного компонента из этой стальной полосы.

Настоящее изобретение относится к стальному листу, имеющему предел прочности более 1100 МПа, предел текучести более 700 МПа, однородное удлинение UE по меньшей мере 8,0% и общее удлинение ТЕ по меньшей мере 10,0%, при этом лист выполнен из стали, имеющей химический состав, содержащий в массовых процентах: 0,1% ≤ C ≤ 0,25%, 4,5% ≤ Mn ≤ 10%, 1 ≤ Si ≤ 3%, 0,03 ≤ Al ≤ 2,5%, остальное Fe и неизбежные примеси, при этом химический состав таков, что CMnIndex = Cx(1 + Mn/3,5) ≤ 0,6, при этом стальной лист имеет структуру, содержащую по меньшей мере 20% остаточного аустенита и по меньшей мере 65% мартенсита, а сумма содержания феррита и бейнита составляет менее 10%.

Способ изготовления высокопрочного листа, обладающего улучшенной формуемостью и пластичностью, химический состав стали которого содержит, мас.%: 0,25<C≤0,4; 2,3≤Mn≤3,5; 2,3≤Si≤3; Al≤0,040, остальное Fe и неизбежные примеси.

Способ получения высокопрочного стального листа, обладающего пределом текучести YS по меньшей мере 850 МПа, прочностью при растяжении TS по меньшей мере 1180 МПа, полным удлинением по меньшей мере 14% и коэффициентом раздачи отверстия HER по меньшей мере 30%.

Изобретение относится к получению высокопрочного стального листа, имеющего предел прочности на разрыв YS более 1000 МПа, предел прочности на растяжение TS более 1150 МПа и общее удлинение Е более 8%.

Изобретение относится к стальному сплаву, пригодному для изготовления цепей, прежде всего для применения в горной промышленности. Компонент транспортерной цепи выполнен из стального сплава, содержащего от 0,17 до 0,25 мас.% С, от 0,8 до 1,4 мас.% Mn, от 0,4 до 1,5 мас.% Cr, от 0,3 до 1,0 мас.% Мо, от 0,9 до 1,3 мас.% Ni, от 0,1 до 0,5 мас.% W, от 0,015 до 0,05 мас.% Al, не более 1,5 мас.% Si, не более 0,25 мас.% Cu, не более 0,015 мас.% Р, не более 0,015 мас.% S, по меньшей мере один из элементов группы элементов Та, Nb, V, Hf, Zr и Ti, с общей долей от 0,005 до 0,1 мас.%, остальное железо вместе с неизбежными примесями, при этом в стальном сплаве элементы вольфрам и один или несколько элементов из группы Та, Nb, V, Hf, Zr и Ti в отношении их долей содержатся в следующем соотношении: где k - коэффициент для одного или нескольких элементов упомянутой группы: для Та, Nb, Hf и Zr=1; для V и Ti=0,3, CMA - доля одного или нескольких элементов упомянутой группы в мас.%, Cw - доля вольфрама в мас.%, mTa - атомная масса тантала (в атомных единицах массы; Та=180,95 а.е.

СПОСОБ ПРОИЗВОДСТВА КОНСТРУКЦИОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ. .

Изобретение относится к способу изготовления листовой стали, полученной из стали, имеющей химический состав, содержащий в массовых процентах: 0,1≤С≤0,4, 4,5≤Mn≤5,5, 1≤Si≤3, 0,2≤Mo≤0,5, остальное представляет собой Fe и неизбежные примеси, а также к листовой стали.

Изобретение относится к области металлургии, а именно к толстостенной стальной трубе для нефтяных скважин, имеющей толщину стенки 40 мм или более. Изготавливают стальную трубу, имеющую следующий химический состав, мас.%: C: от 0,40 до 0,65, Si: от 0,05 до 0,50, Mn: от 0,10 до 1,0, P: 0,020 или менее, S: 0,0020 или менее, растворенный Al: от 0,005 до 0,10, Cr: больше чем 0,40 и до 2,0, Мо: больше чем 1,15 и до 5,0, Cu: 0,50 или менее, Ni: 0,50 или менее, N: 0,007 или менее, O: 0,005 или менее, V: от 0 до 0,25, Nb: от 0 до 0,10, Ti: от 0 до 0,05, Zr: от 0 до 0,10, W: от 0 до 1,5, B: от 0 до 0,005, Ca: от 0 до 0,003, Mg: от 0 до 0,003, редкоземельный металл: от 0 до 0,003, Fe и примеси – остальное.

Изобретение относится к области металлургии, а именно к низколегированной стали для трубы, используемой в нефтяной скважине. Сталь имеет следующий химический состав, мас.%: С: больше чем 0,45 и до 0,65; Si: от 0,05 до 0,50; Mn: от 0,10 до 1,00; P: до 0,020; S: до 0,0020; Cu: до 0,1; Cr: от 0,40 до 1,50; Ni: до 0,1; Mo: от 0,50 до 2,50; Ti: до 0,01; V: от 0,05 до 0,25; Nb: от 0,005 до 0,20, Al: от 0,010 до 0,100; В: до 0,0005; Ca: от 0 до 0,003; O: до 0,01; N: до 0,007; остальное – железо и примеси.

Изобретение относится к области металлургии, в частности к созданию высокопрочной стальной трубы электросваркой сопротивлением. Для повышения сопротивления разрыву и равномерного относительного удлинения, обеспечивающих подходящую сгибаемость стальной трубы, её получают электросваркой сопротивлением из стали, содержащей, в мас.%: C 0,04-0,15, Si 0,10-0,50, Mn 1,0-2,2, P 0,050 или менее, S 0,005 или менее, Cr 0,2-1,0, Ti 0,005-0,030 и Al 0,010-0,050, остальное - Fe и неизбежные примеси, и микроструктуру, включающую полигональный феррит с объёмной долей 70% или более и остаточный аустенит с объёмной долей 3-20%, и остаток, имеющий по меньшей мере одну фазу, выбранную из мартенсита, бейнита и перлита, при этом полигональный феррит имеет средний размер зерна 5 мкм или более и отношение сторон 1,40 или менее.

Изобретение относится к области металлургии. Для улучшения низкотемпературной ударной вязкости стали технологическая линия содержит устройство для нагрева, устройство для прошивки и прокатный стан, а также систему охлаждения, которую размещают в одном из вариантов между устройством для нагрева и устройством для прошивки, а в другом - между устройством для прошивки и прокатным станом.

Изобретение относится к производству стальных труб, в частности, труб для нефтяных и газовых скважин. Нефтепромысловая труба из низколегированной стали, содержащей, мас.%: C 0,25-0,35, Si 0,05-0,50, Mn 0,10-1,50, Cr 0,40-1,50, Mo 0,40-2,00, V 0,05-0,25, Nb 0,010-0,040, Ti 0,002-0,050, растворимый Al 0,005-0,10, N 0,007 или менее, B 0,0001-0,0035, Сa 0-0,005%, Fe и примеси - остальное.

Изобретение относится к области металлургии. Для обеспечения высокой прочности гибкую стальную трубу изготавливают из нескольких сваренных полос, имеющую области основного металла, сварные швы и их зоны термического влияния, имеющую предел текучести, превышающий 80 тыс.

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложена топливная рампа для системы впрыска во впускные каналы для применения при давлении топлива 200-1400 кПа с поверхностью стенки, поглощающей пульсации давления топлива, которая содержит сплав на основе железа, включающий в себя химические элементы С, Si, Mn, Р, S, Nb и Мо, причем ее внутренний объем рампы составляет 60 см3 или больше, а изменение внутреннего объема рампы при действии давления составляет 0,5 см3/МПа или больше, причем путем пайки топливной рампы в печи при изготовлении может быть образована бейнитная структура.

Изобретение относится к области металлургии. Для повышения стойкости к сульфидному коррозионному растрескиванию под действием напряжения бесшовная стальная труба содержит, мас.%: С от 0,20 до 0,50, Si от 0,05 до 0,40, Mn от 0,3 до 0,9, Al от 0,005 до 0,1, N 0,006 или менее, Cr от более 0,6 до 1,7 или менее, Мо от более 1,0 до 3,0 или менее, V от 0,02 до 0,3, Nb от 0,001 до 0,02, В от 0,0003 до 0,0030, О (кислород): 0,0030 или менее и Ti от 0,003 до 0,025, при выполнении соотношения Ti/N: от 2,0 до 5,0, при этом бесшовная стальная труба имеет микроструктуру, включающую фазу отпущенного мартенсита с объемной долей 95% или более, фазу первичного аустенита с размером зерен 8,5 или более, а в поперечном сечении, перпендикулярном направлению прокатки, число включения на нитридной основе с размером частиц 4 мкм или более и числом составляющим 100 или менее при расчете на 100 мм2, включения на нитридной основе с размером частиц меньшим 4 мкм и числом составляющим 1000 или менее при расчете на 100 мм2, включения на оксидной основе с размером частиц 4 мкм или более и числом, составляющим 40 или менее при расчете на 100 мм2 и включения на оксидной основе с размером частиц меньшим 4 мкм числом составляющим 400 или менее при расчете на 100 мм2.

Изобретение относится к области металлургии. Для предотвращения изменения температуры в области тепловой обработки труб способ обработки трубы включает: первый этап размещения во внутренней полости трубы через по меньшей мере одно отверстие, выполненное в ней, по меньшей мере одного расширительного элемента с подающей трубкой, выполненных из гибкого материала, и его расположения по меньшей мере с одной стороны нагреваемого участка трубы посредством воздушного потока, создаваемого во внутренней полости трубы; второй этап подачи текучей среды через гибкую подающую трубку в по меньшей мере один расширительный элемент с обеспечением надувания расширительного элемента и перекрытия внутренней полости трубы по меньшей мере с одной стороны нагреваемого участка трубы; третий этап нагрева участка трубы путем подачи электрического тока к индукционной катушке, расположенной на внешней поверхности нагреваемого участка трубы при одновременном перекрытии по меньшей мере с одной стороны нагреваемого участка внутренней полости трубы с помощью расширительного элемента.

Изобретение относится к области металлургии. Для улучшения низкотемпературной ударной вязкости технологическая линия содержит устройство для нагрева, устройство для охлаждения и устройство для горячей обработки, расположенные в указанном порядке.

Изобретение относится к области металлургии, а именно к стальной трубе, используемой для изготовления топливопровода высокого давления. Труба имеет прочность при растяжении 500-900 МПа, отношение предела текучести к пределу прочности 0,50-0,85, остаточное напряжение в окружном направлении на внутренней поверхности трубы после подвергания трубы обработке для расщепления пополам в направлении оси трубы составляет -20 МПа или менее, а также критическое внутреннее давление (IP), удовлетворяющее условию [IP≥0,41 × TS × α], (α=[(D/d)2-1]/[0,776 × (D/d)2], где TS - прочность при растяжении (МПа) стальной трубы, D - наружный диаметр стальной трубы (мм) и d - внутренний диаметр стальной трубы (мм)), α - коэффициент коррекции изменений в соотношении между внутренним давлением и напряжением, возникающим на внутренней поверхности трубы в соответствии с соотношением между наружным диаметром и внутренним диаметром трубы.
Наверх