Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла

Изобретение относится к авиационной технике, в частности к конструкциям плоских многофункциональных выходных устройств для трехконтурного газотурбинного двигателя изменяемого цикла. Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла содержит корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя. Сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов. Верхняя поворотная стенка сверхзвуковой части корпуса снабжена шевронами, расположенными на ее выходной кромке, запорный элемент верхнего дополнительного соплового канала выполнен в виде поворотной створки с приводом, шарнирно закрепленной на обечайке верхнего дополнительного соплового канала с возможностью постоянного взаимодействия с верхней поворотной стенкой. Запорный элемент нижнего дополнительного соплового канала выполнен в виде профилированного тела, установленного на внутренней поверхности обечайки нижнего дополнительного соплового канала с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки сверхзвуковой части корпуса основного соплового канала. Изобретение позволяет сочетать понижение уровня шума основной струи плоского выходного устройства на взлетном малошумном режиме и низкие значения потерь тяги выходного устройства на сверхзвуковом крейсерском режиме. 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к авиационной технике, в частности к конструкциям плоских многофункциональных выходных устройств для трехконтурного газотурбинного двигателя изменяемого цикла.

Известно плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла (US 7395657, 2005), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов.

В известном выходном устройстве верхняя поворотная стенка и нижняя поворотная створки располагаются так, чтобы отклонять поток выхлопных газов в восходящем или нисходящем направлении и тем самым, блокировать прямую видимость через сопло горячих частей газотурбинного двигателя и маскировки инфракрасного излучения от выхлопных газов двигателя. При этом в известном выходном устройстве не решена проблема шумоглушения на взлетном режиме полета летательного аппарата. Кроме того, сопловой канал известного устройства обладает повышенным сопротивлением при работе на сверхзвуковом крейсерском режиме полета, что снижает значение коэффициента тяги выходного устройства.

Известно выходное устройство газотурбинного двигателя изменяемого цикла (US 6360528, 2002), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием дополнительных сопловых каналов, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные стенки, жестко связанные с дозвуковой частью, и верхнюю и нижнюю поперечные поворотные стенки с приводным механизмом, шарнирно закрепленные на кромках выходного сечения дозвуковой части корпуса, и имеющие шевроны, расположенные на их выходных кромках.

Шевроны на задней кромке поперечных поворотных стенок в известном устройстве предназначены для ускоренного смешения наружного воздуха с потоком выхлопных газов, что снижает уровень слышимого шума струи. Недостатком известного выходного устройства является то, что шевронные кромки поперечных поворотных стенок работают в постоянном режиме независимо от режима работы двигателя и условий полета летательного аппарата. Это снижает эффективность работы двигателя на максимальных сверхзвуковых режимах его работы за счет уменьшения коэффициента тяги выходного устройства двигателя.

Наиболее близким аналогом изобретения является плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла (US 20160326982, 2016), содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов.

В известном выходном устройстве обеспечивается возможность регулирования в процессе работы двигателя величины площади проходного сечения как основного соплового канала, так и дополнительных сопловых каналов, что позволяет оптимизировать тяговые характеристики сопловых каналов выходного устройства на различных режимах работы трехконтурного газотурбинного двигателя. При этом в известном выходном устройстве не решена проблема шумоглушения, т.к. шумовые характеристики выходного устройства на всех режимах работы двигателя, в частности, на взлетном режиме его работы, будут превышать действующие нормативные показатели.

Технической проблемой, решение которой обеспечивается изобретением, является снижение шумовых характеристик выходного устройства на взлетном режиме работы двигателя.

Технический результат изобретения заключается в интенсификации смешения выхлопной реактивной струи с потоком воздуха третьего контура двигателя на взлетном режиме его работы при сохранении эффективных и тяговых характеристик на сверхзвуковом крейсерском режиме.

Технический результат достигается за счет того, что плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла, содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов. Верхняя поворотная стенка сверхзвуковой части корпуса снабжена шевронами, расположенными на ее выходной кромке, запорный элемент верхнего дополнительного соплового канала выполнен в виде поворотной створки с приводом, шарнирно закрепленной на обечайке верхнего дополнительного соплового канала с возможностью постоянного взаимодействия с верхней поворотной стенкой, а запорный элемент нижнего дополнительного соплового канала выполнен в виде профилированного тела, установленного на внутренней поверхности обечайки нижнего дополнительного соплового канала с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки сверхзвуковой части корпуса основного соплового канала.

Приводной механизм верхней поворотной стенки сверхзвуковой части корпуса и привод поворотной створки могут быть синхронизированы между собой.

Существенность отличительных признаков плоского выходного устройства подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения - интенсификацию смешения выхлопной реактивной струи с потоком воздуха третьего контура двигателя на взлетном режиме его работы при сохранении эффективных и тяговых характеристик на сверхзвуковом крейсерском режиме.

Пример выполнения плоского выходного устройства трехконтурного газотурбинного двигателя изменяемого цикла показан на чертежах, где:

на фиг. 1 изображен общий вид трехконтурного газотурбинного двигателя с плоским выходным устройством;

на фиг. 2 показано плоское выходное устройство, продольный разрез;

на фиг. 3 - поперечное сечение А-А плоского выходного устройства на фиг. 2;

на фиг. 4 - общий вид плоского выходного устройства при работе двигателя на взлетном малошумном режиме;

на фиг. 5 - положение верхней поворотной стенки сверхзвуковой части корпуса и поворотной створки верхнего дополнительного соплового канала при работе двигателя на взлетном малошумном режиме;

на фиг. 6 - общий вид плоского выходного устройства при работе двигателя на сверхзвуковом крейсерском режиме;

на фиг. 7 - положение верхней поворотной стенки сверхзвуковой части корпуса и поворотной створки верхнего дополнительного соплового канала при работе двигателя на сверхзвуковом крейсерском режиме.

Трехконтурный газотурбинный двигатель изменяемого цикла, представленный на фиг.1, содержит двухканальный воздухозаборник 1, двухъярусный вентилятор 2, канал первого контура 3, канал второго контура 4, канал третьего контура 5, газогенератор 6 и плоское выходное устройство 7.

Плоское выходное устройство 7 содержит корпус 8 основного соплового канала 9, состоящий из дозвуковой части 10, сужающейся в поперечном сечении полости корпуса 8, и сверхзвуковой части 11 с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса 8. Дозвуковая часть 10 корпуса 8 сообщена входным сечением с каналами 3 и 4 первого и второго контура, а выходным сечением А-А, имеющим прямоугольную форму (см. фиг. 1-3), состыкована со сверхзвуковой частью 11.

Сверхзвуковая часть 11 корпуса 8 основного соплового канала 9 имеет две вертикальные стенки 12, нижнюю поперечную стенку 13, жестко связанные с дозвуковой частью 10, и верхнюю поворотную стенку 14 с приводным механизмом 15, шарнирно закрепленную на верхней кромке 16 выходного сечения дозвуковой части 10 корпуса 8. Верхняя поворотная стенка 14 сверхзвуковой части 11 корпуса 8 снабжена шевронами 17 (см. фиг. 4), расположенными на ее выходной кромке. Размеры, количество и угол установки шевронов 17 относительно плоскости верхней поворотной стенки 14 выбираются исходя из условия обеспечения минимального уровня шума струи основного соплового канала 9.

На корпусе 8 основного соплового канала 9 закреплены две обечайки 18 и 19 с образованием верхнего дополнительного соплового канала 20 и нижнего дополнительного соплового канала 21, сообщенных с каналом третьего контура 5. Обечайка 18 верхнего дополнительного соплового канала 20 имеет подвижно установленный запорный элемент для регулирования площади проходного сечения этого канала, выполненный в виде поворотной створки 22 с приводом 23. Поворотная створка 22 шарнирно закреплена на обечайке 18 верхнего дополнительного соплового канала 20 с возможностью постоянного взаимодействия с верхней поворотной стенкой 14.

Дозвуковая часть 10 основного соплового канала 9 выполнена с нерегулируемой площадью критического сечения, что существенно повышает коэффициент тяги выходного устройства за счет устранения утечек в подвижных соединениях в зоне с большим перепадом давления, обеспечивая низкий удельный расход топлива при полете на сверхзвуковом крейсерском режиме. Изменение режима работы двигателя сопровождается изменением площади верхнего и нижнего дополнительных сопловых каналов 20 и 21.

Обечайка 19 нижнего дополнительного соплового канала 21 имеет подвижно установленный запорный элемент, выполненный в виде профилированного тела 24 с приводом 25, установленного на внутренней поверхности обечайки 19 с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность 26, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки 13 сверхзвуковой части 11 корпуса 8 основного соплового канала 9.

Приводной механизм 15 верхней поворотной стенки 14 сверхзвуковой части 11 корпуса 8 и привод 23 поворотной створки 22 синхронизированы между собой.

Плоское выходное устройство 7 работает следующим образом. Внутренний контур рассматриваемого двигателя работает по схеме двухконтурного двигателя со смешением потоков. Поток сжатого воздуха А из внутреннего канала двухканального воздухозаборника 1 поступает во внутренний каскад двухъярусного вентилятора 2, далее соответствующие потоки сжатого воздуха В и С поступают в канал первого контура 3 и канал второго контура 4 двигателя, соответственно. Поток сжатого воздуха В из канала первого контура 3 поступает на вход газогенератора 6, на выходе из которого смешивается с потоком воздуха С из канала второго контура 4 и поступает в дозвуковую часть 10 основного соплового канала 9 плоского выходного устройства 7.

Поток сжатого воздуха D из каскада верхнего яруса двухъярусного вентилятора 2 поступает в канал третьего контура 5, имеющий переходный участок (на чертеже не показан), в котором этот канал кольцевого сечения преобразуется в два плоских прямоугольных канала - верхний дополнительный сопловой канал 20 и нижний дополнительный сопловой канал 21. Поток сжатого воздуха D из канала третьего контура 5 на взлетном режиме используется для организации газодинамического акустического экрана основной струи. Проведенные расчетные и экспериментальные исследования показали, что оптимальное значение степени расширения в сопле третьего контура, соответствующее максимальному снижению уровня шума основной струи составляет примерно 1,3. Количество воздуха третьего контура, потребное для эффективного снижения шума струи основного контура составляет 10-20% от объема воздуха основного соплового канала 9.

При изменении режима работы двигателя изменяется общая площадь верхнего и нижнего дополнительных сопловых каналов 20 и 21. Потребные значения общей площади каналов 20 и 21 достигаются за счет осевого перемещения профилированного тела 24 - левая крайняя его позиция соответствует взлетному малошумному режиму с максимальным значением общей площади каналов 20 и 21, а правая крайняя его позиция соответствует крейсерскому сверхзвуковому режиму с минимальным значением общей площади каналов 20 и 21.

На взлетном малошумном режиме работы двигателя профилированное тело 24 (фиг. 4) перемещается в крайнее левое положение, образуя канал для потока воздуха D, являющийся соплом третьего контура, которое образуется между профилированной запорной поверхностью 26 и поверхностью нижней поперечной стенки 13. Весь поток воздуха D третьего контура, поступающий в нижний дополнительный сопловой канал 21, служит для организации акустического экрана струи основного соплового канала 9 по его нижней поверхности.

При работе двигателя на этом режиме верхний дополнительный сопловой канал 20 полностью перекрыт.Взаимное расположение поворотных осей верхней поворотной стенки 14 и поворотной створки 22 выбираются таким образом, чтобы обеспечить присутствие шевронов 17 в потоке F основного соплового канала 9 на взлетном малошумном режиме (фиг. 5). Шевроны 17, расположенные на выходной кромке верхней поворотной стенки 14, выходят за пределы поворотной створки 22 и обеспечивают смешение потока F основного соплового канала 9 с воздухом окружающей среды G для улучшения акустических характеристик выходного устройства на этом режиме.

На сверхзвуковом крейсерском режиме работы двигателя канал третьего контура 5 в основном используется для перепуска пристеночного слоя воздуха из двухканального воздухозаборника 1 в верхний дополнительный сопловой канал 20, снижая тем самым потери полного давления и неравномерность потока на входе в вентилятор 2 и донное сопротивление основного соплового канала 9. Регулируемые элементы наружного каскада двухъярусного вентилятора 2 устанавливаются в положение, обеспечивающие минимальный расход потока воздуха D через канал третьего контура 5 и минимальную степень повышения давления наружного каскада двухъярусного вентилятора 2. В этом случае двигатель работает по схеме близкой к схеме двухконтурного двигателя со смешением потоков, обеспечивая минимальный крейсерский удельный расход топлива.

На сверхзвуковом крейсерском режиме работы двигателя профилированное тело 24 (фиг. 6) перемещается крайнее правое положение, перекрывая нижний дополнительный сопловой канал 21. Взаимное расположение поворотных осей верхней поворотной стенки 14 и поворотной створки 22 выбираются таким образом, чтобы обеспечить отсутствие шевронов 17 в потоке F основного соплового канала 9 на сверхзвуковом крейсерском режиме работы двигателя. При этом шевроны 17 касаются внутренней поверхности поворотной створки 22, образуя щелевидные отверстия 27 (фиг. 7).

Поток воздуха D из верхнего дополнительного соплового канала 20 пропускается через щелевидные отверстия 27, снижая донное сопротивление выходного устройства, обеспечивая при этом канализацию пристеночного слоя воздуха из воздухозаборника и продувку воздухом третьего контура для охлаждения элементов конструкции.

Такое решение позволяет сочетать понижение уровня шума основной струи плоского выходного устройства за счет присутствия шевронов в потоке основного соплового канала на взлетном малошумном режиме и низкие значения потерь тяги выходного устройства на сверхзвуковом крейсерском режиме за счет отсутствия шевронов в потоке основного соплового канала.

1. Плоское выходное устройство трехконтурного газотурбинного двигателя изменяемого цикла, содержащее корпус основного соплового канала, состоящий из дозвуковой части, сужающейся в поперечном сечении полости корпуса, сообщенной входным сечением с каналами первого и второго контура двигателя и имеющей в выходном сечении прямоугольную форму, и сверхзвуковой части с увеличивающейся по потоку газа площадью прямоугольного поперечного сечения полости корпуса, состыкованной с дозвуковой частью в выходном ее сечении, и две обечайки, закрепленные на корпусе основного соплового канала с образованием верхнего и нижнего дополнительных сопловых каналов, сообщенных с каналом третьего контура двигателя, причем сверхзвуковая часть корпуса основного соплового канала имеет две вертикальные и нижнюю поперечную стенки, жестко связанные с дозвуковой частью, и верхнюю поворотную стенку с приводным механизмом, шарнирно закрепленную на верхней кромке выходного сечения дозвуковой части корпуса, а обечайки верхнего и нижнего дополнительных сопловых каналов имеют подвижно установленные запорные элементы с приводом для регулирования площади проходного сечения этих каналов, отличающееся тем, что верхняя поворотная стенка сверхзвуковой части корпуса снабжена шевронами, расположенными на ее выходной кромке, запорный элемент верхнего дополнительного соплового канала выполнен в виде поворотной створки с приводом, шарнирно закрепленной на обечайке верхнего дополнительного соплового канала с возможностью постоянного взаимодействия с верхней поворотной стенкой, а запорный элемент нижнего дополнительного соплового канала выполнен в виде профилированного тела, установленного на внутренней поверхности обечайки нижнего дополнительного соплового канала с возможностью возвратно-поступательного перемещения в осевом направлении и имеющего выпуклую профилированную запорную поверхность, размещенную с возможностью взаимодействия со свободной кромкой нижней поперечной стенки сверхзвуковой части корпуса основного соплового канала.

2. Плоское выходное устройство по п. 1, отличающееся тем, что приводной механизм верхней поворотной стенки сверхзвуковой части корпуса и привод поворотной створки синхронизированы между собой.



 

Похожие патенты:

Увеличение силы тяги реактивного двигателя достигается увеличением сопротивления отделяемому телу путем дополнительного сопротивления от взаимодействия с поперечно-вставляемым новым телом в виде столба воздуха вместо отработанного, сформированного поперечно-слоистым наполнением освобождаемого пространства воздухом из окружающего пространства по мере ухода отсеченного отработанного тела.

Изобретение относится к области двигателестроения, в частности к реактивным соплам с устройствами подавления шума, и предназначено для использования в авиационных двигателях.

Сопло летательного аппарата содержит заднюю часть, образованную шевронами, распределенными вдоль периферии сопла, и средства впрыскивания дополнительных газовых струй.

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых самолетов. Турбореактивный двигатель включает турбину низкого давления и регулируемый лепестковый смеситель, содержащий коническую обечайку, на ее выходе.

Изобретение относится к задней кромке для двигателя летательного аппарата, оснащенной подвижными шевронными элементами. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к гондоле турбореактивного двигателя, снабженной средствами снижения шума, создаваемого этим двигателем. .

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит последовательно установленные и шарнирно соединенные друг с другом корпус, дозвуковые и сверхзвуковые створки, а также внешние створки, соединенные с корпусом и сверхзвуковыми створками, боковые стенки, соединенные с корпусом.

Изобретение относится к двигательному машиностроению, а именно к регулируемым разрезным соплам прямоточных воздушно-реактивных двигателей. Разрезное регулируемое сопло содержит шарнирно закрепленные на корпусе двумя кольцевыми рядами дозвуковые ведущие и ведомые створки и сверхзвуковые ведущие и ведомые створки, формирующие проточный тракт, систему синхронизации створок и систему регулирования площади критического сечения сопла, включающую приводы, связанные с рычагами, закрепленными на ведущих дозвуковых створках.

Изобретение относится к двигательному машиностроению, а именно к регулируемым разрезным соплам прямоточных воздушно-реактивных двигателей. Разрезное регулируемое сопло содержит шарнирно закрепленные на корпусе двумя кольцевыми рядами дозвуковые ведущие и ведомые створки и сверхзвуковые ведущие и ведомые створки, формирующие проточный тракт, систему синхронизации створок и систему регулирования площади критического сечения сопла, включающую приводы, связанные с рычагами, закрепленными на ведущих дозвуковых створках.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит последовательно установленные и шарнирно соединенные друг с другом корпус, дозвуковые створки и сверхзвуковые створки, а также внешние створки, соединенные с корпусом и сверхзвуковыми створками, а также обтекатели, каждый из которых выполнен в поперечном разрезе П-образной формы и контактирует с соответствующей сверхзвуковой створкой по боковым поверхностям.

Изобретение относится к реактивным соплам бесфорсажных газотурбинных двигателей авиационного применения. Выхлопное сопло турбореактивного двигателя летательного аппарата имеет канал изогнутой формы, открытый с входной и выходной стороны и имеющий нижнюю, верхнюю и боковые стенки, включает часть канала, сужающуюся до критического сечения прямоугольной формы в сторону выхода, снабженную подвижной створкой, и расположенную после него расширяющуюся часть.

Изобретение относится к области авиационного двигателестроения, в частности к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит корпус, дозвуковые створки, шарнирно прикрепленные к корпусу, сверхзвуковые створки, шарнирно соединенные с дозвуковыми, и внешние створки, одним концом шарнирно прикрепленные к корпусу, а другим - соединенные со сверхзвуковыми створками.

Изобретение относится к области авиационного двигателестроения, в частности к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит корпус, дозвуковые створки, шарнирно прикрепленные к корпусу, сверхзвуковые створки, шарнирно соединенные с дозвуковыми, и внешние створки, одним концом шарнирно прикрепленные к корпусу, а другим - соединенные со сверхзвуковыми створками.

Гиперзвуковой летательный аппарат содержит фюзеляж, прямоточный воздушно-реактивный двигатель, интегрированный с нижней частью фюзеляжа, и стартовую двигательную установку, состыкованную с фюзеляжем последовательно посредством устройства стыковки и отделения.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит корпус с закрепленными на нем боковыми стенками, дозвуковые, сверхзвуковые и внешние створки, а также продольные рычаги, рычаги управления дозвуковыми створками, гидроцилиндры управления дозвуковыми створками и кронштейны.

Способ запуска гиперзвукового летательного аппарата включает разгон стартовой двигательной установкой, отделение и запуск прямоточного воздушно-реактивного двигателя, интегрированного с нижней частью фюзеляжа.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции плоских сопел турбореактивных двигателей. Плоское сопло содержит последовательно установленные и шарнирно соединенные друг с другом корпус, дозвуковые и сверхзвуковые створки, а также внешние створки, соединенные с корпусом и сверхзвуковыми створками, боковые стенки, соединенные с корпусом.
Наверх