Устройство для получения порошка на основе карбида титана



Устройство для получения порошка на основе карбида титана
Устройство для получения порошка на основе карбида титана
B22F2302/10 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2686897:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение может быть использовано в неорганической химии. Устройство для получения порошка на основе карбида титана содержит цилиндрические анод и катод, выполненные из графита. Катод выполнен в виде вертикально расположенного стакана, к которому прикреплен диэлектрический держатель, в резьбовое отверстие которого вставлен винт, соединенный c одним концом анода. Другой конец анода расположен соосно катоду с возможностью продольного перемещения в полости катода для соприкосновения с порошковой смесью углерода и титана на дне катода. Анод и катод подключены к источнику постоянного тока. Изобретение позволяет получить порошок на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере без создания разреженной инертной атмосферы. 2 ил.

 

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом и может быть использовано для получения порошка на основе карбида титана.

Известно устройство для получения покрытия на основе карбида титана [CN 104141109 В, МПК C23C14/06, C23C14/32, опубл. 15.02.2017], содержащее электроды, расположенные в герметичной камере, подключенной к вакуумному насосу и к емкости с углеводородным газом. Электроды подключены к источнику тока. Один из электродов выполнен в виде массивной титановой пластины. В герметичной камере расположен нагреватель.

Обязательным условием работы этого устройства является создание атмосферы из углеводородного газа внутри герметичной камеры. Масса синтезируемого продукта ограничивается величиной скорости расхода титанового электрода в электроразрядном процессе.

Известно устройство для получения порошка на основе карбида титана [J. Yu et al. / Journal of Alloys and Compounds, 2017, vol. 693. - Р. 500-509], содержащее анод в виде объемной массивной титановый пластины, катод в виде графитового стержня, которые подключены к источнику постоянного тока. Анод и катод размещены на изоляторах внутри герметичной камеры, соединенной с вакуумным насосом и баллонами с инертными газами, например, Ar, H2.

Устройство обеспечивает низкую производительность, обусловленную двумя факторами: ограничивается временем, необходимым для откачки воздуха из герметичной камеры и закачки в камеру инертного газа, то есть временем работы устройства, включающим в себя время формирования инертной атмосферы пониженного давления; масса получаемого продукта ограничивается величиной скорости расхода (испарения) титанового анода.

Известно принятое за прототип устройство для получения порошка на основе карбида титана [Y. Saito et. l. / Journal of Crystal Growth, 1997, vol. 172. - Р. 163-170], содержащее герметичную камеру, заполненную газообразным Не при пониженном давлении, в полости которой на диэлектрических держателях за торцы закреплены горизонтально и соосно графитовые цилиндрические анод и катод, которые подключены к источнику постоянного тока. Свободные торцы анода и катода образуют разрядный промежуток, в котором поджигается дуговой разряд. В аноде выполнена концентрическая цилиндрическая полость на глубину, равную 60% длины анода для заполнения исходным реагентом для синтеза: порошком, содержащим углерод и титан. Диаметр анода существенно меньше диаметра катода, а именно в 2,16 раз. Катод закреплен неподвижно, а анод закреплен на винте для перемещения вдоль продольной оси в целях регулировки величины разрядного промежутка.

Обязательным условием работы этого устройства является создание разряженной инертной атмосферы Не внутри герметичной камеры. Масса синтезируемого порошкового продукта ограничивается величиной скорости расхода анода, полость которого заполнена исходными реагентами, содержащими углерод и титан.

Предложенное изобретение позволяет получить порошок на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере при нормальных условиях.

Устройство для получения порошка на основе карбида титана, также как в прототипе, содержит цилиндрические анод и катод, выполненные из графита, анод при помощи винта закреплен на диэлектрическом держателе соосно с катодом, анод и катод подключены к источнику постоянного тока.

Согласно изобретению катод выполнен в виде вертикально расположенного стакана, к которому прикреплен диэлектрический держатель. В резьбовое отверстие диэлектрического держателя вставлен винт, соединенный c одним концом анода. Свободный конец анода расположен соосно катоду с возможностью продольного перемещения в полости катода для соприкосновения с порошковой смесью углерода и титана, помещенной на дно катода.

Предлагаемое устройство позволяет реализовать синтез порошка на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в открытой воздушной среде в полости графитового катода. При возникновении дугового разряда постоянного тока температура поднимается до нескольких тысяч градусов, в результате чего, возникают условия для синтеза карбида титана. В полости катода при горении дугового разряда генерируется газообразный оксид углерода СО, который предотвращает окисление получаемого порошка кислородом атмосферного воздуха.

По сравнению с прототипом для работы устройства не требуются операции по формированию защитной газовой разряженной атмосферы, так как анод и катод расположены на открытом воздухе, а защитная атмосфера СО генерируется самопроизвольно непосредственно в процессе горения дугового разряда в полости графитового катода.

На фиг. 1 приведена схема устройства для получения порошка на основе карбида титана.

На фиг. 2 представлена рентгеновская дифрактограмма полученного порошка на основе карбида титана.

Устройство содержит графитовый цилиндрический катод 1 в виде вертикально расположенного стакана, к стенке которого прикреплен диэлектрический держатель 2. В резьбовое отверстие диэлектрического держателя 2 вставлен винт 3, соединенный c одним концом графитового цилиндрического анода 4. Свободный конец анода 4 расположен соосно катоду 1 с возможностью продольного перемещения в его полости для соприкосновения с порошковой смесью углерода и титана 5, помещенной на дне катода 1. Анод 4 и катод 1 подключены к источнику постоянного тока 6 (ИПТ).

При включении источника постоянного тока 6 (ИПТ) между порошковой смесью углерода и титана 5 на дне графитового катода 1, и графитовым анодом 4 возникает разность потенциалов. Вращением винта 3 перемещают анод 4 внутри полости катода 1 до соприкосновения с порошковой смесью углерода и титана 5. Дуговой разряд поджигают кратковременным соприкосновением анода 4 с порошковой смесью углерода и титана 5, причем после начала протекания тока, анод 4 отводят вертикально вверх при помощи винта 3, образуя пространство для горения дугового разряда. После горения дугового разряда в течение нескольких секунд, источник постоянного тока 6 (ИПТ) отключают. После остывания анода 4 и катода 1 собирают осевший на поверхности полости катода 1 полученный порошок.

При использовании порошковой смеси углерода и титана, состоящей из титана (гексагональной структуры) с чистотой 99% и углерода (графитовой структуры) с чистотой 99% при атомарном соотношении 1:1, воздействии дугового разряда в течение 10 секунд при токе 165 А был получен порошок, содержащий титан (гексагональной структуры), углерод (графитовой структуры) и карбид титана (кубической структуры). В результате рентгенофазового анализа полученного порошка идентифицированы пять дифракционных максимумов, соответствующих кубической модификации карбида титана TiC (фиг. 2).

Устройство для получения порошка на основе карбида титана, содержащее цилиндрические анод и катод, выполненные из графита, причем анод при помощи винта закреплен на диэлектрическом держателе соосно с катодом, анод и катод подключены к источнику постоянного тока, отличающееся тем, что катод выполнен в виде вертикально расположенного стакана, к которому прикреплен диэлектрический держатель, в резьбовое отверстие которого вставлен винт, соединенный c одним концом анода, другой конец которого расположен с возможностью продольного перемещения в полости катода для соприкосновения с порошковой смесью углерода и титана на дне катода.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения порошка диборида титана включает приготовление мокрой реакционной смеси путем гидролиза тетрахлорида титана в дистиллированной воде при постоянном перемешивании, с получением гидратированного диоксида титана и соляной кислоты при регулировке кислотности добавлением гидроксида аммония NH4OH до рН от 7 до 8.
Изобретение может быть использовано в производстве фотокатализаторов и сорбентов для очистки воды и воздуха от токсичных веществ. Для получения титанокремниевого натрийсодержащего продукта осуществляют разложение сфенового концентрата соляной кислотой с концентрацией 30-35% при температуре 95-105°С с образованием раствора хлорида кальция и титанокремниевого остатка.
Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с последующим охлаждением.

Изобретение может быть использовано в химической технологии. Для приготовления порошкообразных образцов η-фазы состава TiO2-х×nH2O, где n=0,9-2,0, с интеркаляцией поли-N-винилкапролактама (ПВК) в структуру η-фазы осуществляют следующие стадии.
Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов.

Изобретение может быть использовано в химической промышленности. Способ получения тетрахлорида титана включает процесс хлорирования, в котором титансодержащее сырье приводят в реакцию с коксом и хлором и получают тетрахлорид титана.

Изобретение может быть использовано в химической промышленности. Способ обработки титансодержащего сырья включает получение тетрахлорида титана с использованием высокотитанового сырья и кокса.

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов.

Изобретение может быть использовано в химической промышленности. Титанат свинца получают из азотнокислого свинца и диоксида титана.

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, при этом синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°C до 19°C и от 21°C до 40°C соответственно.

Изобретение может быть использовано в металлургических, стекловаренных, мусоросжигательных и цементообжигающих печах. Процесс рекуперации тепла состоит из двух циклов – цикла отвода тепла и цикла реформинга, выполняемых поочередно в двух и более регенераторах, заполенных насадками.

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания крупных кристаллов алмазов. Устройство содержит силовую раму 1, установленные в ней соосно в ряд контейнеры 2, 3 цилиндрической формы с размещенным в каждом контейнере соответствующим многопуансонным аппаратом высокого давления 4 в форме куба, в котором выращиваются алмазы, между крайними контейнерами 2, 3 и силовой рамой 1 установлены полуцилиндрические вкладыши 5, цилиндрическая поверхность каждого из которых контактирует с ответной ей полуцилиндрической поверхностью рамы 1.

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагрев полученного твердого остатка.
Изобретение относится к способу получения композитного материала для активного электрода суперконденсатора (СК), содержащего матрицу из термоокисленного полиметилметакрилата и наполнителя из однослойных углеродных нанотрубок.

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с абразивными частицами, а также облицовочных плит.

Изобретение относится к способу получения тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.

Изобретение относится к технологии получения синтез-газа для малотоннажного производства метанола. Способ осуществляется путем парциального окисления углеводородных газов (УВГ) при давлении 6,0-7,0 МПа в газогенераторе, оборудованном узлами ввода УВГ и окислителя.

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с абразивными частицами, а также облицовочных плит.
Изобретение относится к технологии получения активного угля (АУ) на основе растительного сырья и может быть использовано в процессах очистки жидких сред. Предложен способ получения дробленого активного угля из плодовых косточек персика и абрикоса, включающий карбонизацию до конечной температуры 700°С, дробление, рассев карбонизата и парогазовую активацию.

Изобретение относится к установкам для получения водорода паровым риформингом углеводородов. Установка включает блок адсорбционной сероочистки с регенерируемым адсорбентом, оснащенный линией подачи газа регенерации или без регенерируемого адсорбента, риформер, конвертор окиси углерода, соединенный с риформером линией подачи синтез-газа, с блоком выделения водорода - линией подачи водородсодержащего газа, а с блоком адсорбционной сероочистки и с риформером - линией подачи очищенного сырья, на которой установлен нагреватель.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.
Наверх