Способ очистки подотвальных вод и технологических растворов от меди

Изобретение относится к очистке подотвальных вод ионитами и может быть использовано в горнодобывающей промышленности. Способ очистки подотвальных вод и технологических растворов от меди включает удаление содержащихся ионов железа(III) и ионообменную очистку. Очистку проводят в два этапа. На первом этапе очистки в подотвальные воды и технологические растворы добавляют раствор щелочи до рН=3,5-4 и удаляют содержащиеся ионы железа(III). На втором этапе подотвальные воды и технологические растворы, освобожденные от ионов железа(III), пропускают в динамическом режиме через колонку, загруженную медь-селективной ионообменной смолой - катионитом в водородной форме. Затем проводят одновременную десорбцию меди и регенерацию катионита 10%-ным раствором H2SO4 до отрицательной реакции на ионы Cu2+ с получением концентрированного раствора сульфата меди. Изобретение позволяет очистить подотвальные воды и технологические растворы от меди с получением раствора сульфата меди, используемого в качестве целевого продукта. 1 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к очистке подотвальных вод ионитами и может быть использовано для извлечения из сточных вод горнодобывающих производств ионов меди с последующим получением целевого продукта.

Известен способ очистки вод, содержащих ионы меди, цинка, железа, пропусканием через ионообменные смолы, которые получены аминированием гидразином сополимера метилакрилата и дивинилбензола.

Недостатком способа является невысокая эффективность очистки водных растворов от ионов металлов переменной валентности при их совместном присутствии (медь, цинк, никель, железо, хром и др.). [Авторское свидетельство СССР №528310, кл. C08F 226/02, C08F 8/32, 1975].

Известен способ очистки сточных вод от тяжелых металлов, заключающийся в том, что воду пропускают в динамическом режиме через колонку, заполненную смесью двух модифицированных органическими веществами сорбентов в соотношении 2:1, затем этой новой твердой фазой одновременно извлекают кадмий, свинец, медь, цинк, хром и марганец, при этом с помощью 20 г смеси сорбентов в течение часа достигается очистка 100 дм3 воды [Патент RU 2480420]. Основным недостатком способа является получение после регенерации сорбентов раствора, содержащего высокие концентрации токсичных металлов. В разработанном способе нет предложений по утилизации или дальнейшему использованию десорбата.

Известен способ ионообменной очистки растворов и сточных вод от никеля и меди пропусканием очищаемой воды через колонку, загруженную смесью аминокарбоксильного катионита в солевой или водородно-солевой форме и низкоосновного анионита полимеризационного типа в гидроксильной или гидроксильно-солевой форме. Катионит берется в Kat+ или Kat+/H+ - форме, где Kat+ ион щелочного металла или аммония в ОН- или OH-/An- - форме, An- - анион минеральной кислоты. [Патент на изобретение РФ №2049073, МПК6 C02F 1/42, 1994].

Недостатком способа является использование двух видов ионитов, требующих для регенерации разные по свойствам реактивы. При этом раствор, полученный после регенерации ионитов, требует дальнейшей утилизации.

Наиболее близким к изобретению является способ очистки подотвальных вод и технологических растворов, включающий удаление содержащихся ионов железа(III) и ионообменную очистку, раскрытый в источнике (Орехова Н.Н. Научное обоснование и разработка комплексной технологии переработки и утилизации техногенных медно-цинковых вод горных предприятий, Диссертация на соискание ученой степени доктора технических наук, Магнитогорск. 2014, с. 48, 60, 70, 73, 76, 80, 83-85).

Недостатком способа является то, что раствор, полученный после регенерации ионитов, требует дальнейшей утилизации.

Задачей изобретения является разработка способа очистки подотвальных вод и технологических растворов от ионов меди с достижением следующего технического результата: в отличие от известных способов, раствор, получаемый после регенерации катионита, не требует дальнейшей утилизации, а используется как целевой продукт - сульфат меди.

Поставленная задача решается с помощью способа очистки подотвальных вод и технологических растворов от меди, включающего удаление содержащихся ионов железа(III) и ионообменную очистку, при этом согласно изобретению очистку проводят в два этапа, на первом этапе очистки в подотвальные воды и технологические растворы добавляют раствор щелочи до рН=3,5-4 и удаляют содержащиеся ионы железа(III), на втором этапе подотвальные воды и технологические растворы, освобожденные от ионов железа(III), пропускают в динамическом режиме через колонку, загруженную медь-селективной ионообменной смолой -катеонитом в водородной форме, затем проводят одновременную десорбцию меди и регенерацию катионита 10%-ным раствором H2SO4 до отрицательной реакции на ионы Cu2+ с получением концентрированного раствора сульфата меди. Для осаждения ионов железа(III) предпочтительным вариантом является гидроксид натрия.

Новизной заявляемого способа является то, что впервые в процессе очистки подотвальных вод и технологических растворов от меди в концентрациях, значительно превышающих ПДК, предлагается использовать катионит, иммобилизованный органическими реагентами, с последующим получением целевого продукта.

Сущность изобретения заключается в том, что на первом этапе осуществляется удаление из подотвальных вод и технологических растворов ионов железа(III) с помощью 25%-ного раствора гидроксида натрия. Осадок гидроксида железа(III) отделяют фильтрованием или декантацией. Затем освобожденную от ионов железа(III) подотвальную воду и технологические растворы пропускают в динамическом режиме через колонку, заполненную медь-селективной ионообменной смолой - катионитом в водородной форме для извлечения ионов меди. После насыщения катионита осуществляют десорбцию меди и регенерацию катионита 10%-ным раствором H2SO4. Полученный десорбат, содержащий концентрированный раствор сульфата меди подвергают электролизу с целью выделения меди. После десорбции меди из колонки катионит готов к дальнейшей работе. Пример 1.

К 1 л очищаемой воды добавляют 25%-ный раствор гидроксида натрия до достижения рН воды 3,5-4,0 при постоянном перемешивании. Выпавший осадок гидроксида железа(III) отделяют фильтрованием или декантацией. Затем осветленную воду пропускают через сорбционную колонку.

Пробу пропускают через колонку диаметром 11-12 мм, высотой 50 см, заполненную медь-селективной ионообменной смолой в Н-форме. После очистки воду проверяют на содержание остаточных количеств меди, железа и других металлов атомно-абсорционным методом. Десорбцию меди осуществляют 10%-ным раствором H2SO4. Полученный раствор после десорбции меди из ионообменной смолы представляет собой концентрированный раствор сульфата меди, который далее подвергается электролизу с целью выделения меди. Раствор сульфата меди также может использоваться как целевой продукт.

Особенностью предлагаемого способа является избирательное извлечение ионообменной смолой меди из подотвальных вод. Селективному извлечению меди смолой из сточных вод мешают ионы железа(III), которые удаляются на первом этапе очистки осаждением раствором гидроксида натрия. Полученный десорбат представляет собой целевой продукт. После десорбции меди из ионообменной колонки с помощью 10%-ного раствора H2SO4 ионит возвращается в рабочее состояние и может быть использован для дальнейшей очистки подотвальных вод. Преимуществом предлагаемого способа очистки подотвальных вод и технологических растворов является то, что десорбция сорбированных примесей, регенерация ионообменной смолы (активация) проводятся в одну стадию, что упрощает реализацию данного способа на практике. Десорбат не является отходом и может быть использован как целевой продукт.

Очистку подотвальных вод от железа и меди осуществляли в стоках горнорудных предприятий.

Пример 2.

Очистке подвергали подотвальные воды, содержащие (мг/дм): меди -220, железа(III) - 27, железа (общ.) - 573, цинка - 896, кальция - 628, магния - 3766, алюминия - 771, сульфатов - 20298. Эксперименты повторяют, варьируя скорость пропускания сточной воды через колонку с ионообменной смолой, рН очищаемой воды, способ подготовки воды перед пропусканием через катионит. Результаты экспериментов приведены в таблице 1.

1. Способ очистки подотвальных вод и технологических растворов от меди, включающий удаление содержащихся ионов железа(III) и ионообменную очистку, отличающийся тем, что очистку проводят в два этапа, на первом этапе очистки в подотвальные воды и технологические растворы добавляют раствор щелочи до рН=3,5-4 и удаляют содержащиеся ионы железа(III), на втором этапе подотвальные воды и технологические растворы, освобожденные от ионов железа(III), пропускают в динамическом режиме через колонку, загруженную медь-селективной ионообменной смолой - катионитом в водородной форме, затем проводят одновременную десорбцию меди и регенерацию катионита 10%-ным раствором H2SO4 до отрицательной реакции на ионы Cu2+ с получением концентрированного раствора сульфата меди.

2. Способ очистки подотвальных вод и технологических растворов от меди по п. 1, отличающийся тем, что на первом этапе очистки для удаления ионов железа(III) используют гидроксид натрия.



 

Похожие патенты:

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) и трибутилфосфата (ТБФ), с получением насыщенного экстрагента и рафината экстракции.
Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора.

Изобретение относится к способу восстановления скандия и ионов, содержащих скандий, из сырьевого потока, который может представлять собой, без какого-либо ограничения, щелок или пульпу от выщелачивания.

Изобретение относится к процессу извлечения никеля и кобальта из растворов технологического щелока при непрерывном ионном обмене. Способ включает: (а) пропускание раствора технологического щелока через ионообменный слой для поглощения никеля ионообменной смолой и образования раствора кобальтсодержащего рафината, (b) пропускание раствора серной кислоты через насыщенный ионообменный слой для десорбирования никеля из ионообменной смолы и получения никельсодержащего элюата, (с) пропускание промывного раствора через десорбированный ионообменный слой, (d) корректировка значения рН раствора кобальтсодержащего рафината до величины рН по меньшей мере 2,3, (е) пропускание раствора кобальтсодержащего рафината через ионообменный слой для предварительного поглощения кобальта ионообменной смолой, (f) повторяют стадии (а)-(е), до повышения концентрации кобальта в растворе кобальтсодержащего рафината до уровня, по меньшей мере вдвое большего, чем в растворе технологического щелока, и (g) удаление первой части раствора кобальтсодержащего рафината со стадии (d) из контура извлечения никеля для последующего извлечения кобальта, и (h) проведение второй части раствора кобальтсодержащего рафината из стадии (d) до стадии (е).

Изобретение относится гидрометаллургии, а именно к очистке латеритно-никелевого выщелачивающего потока. В предложенном способе осуществляют регулирование рН раствора выщелачивания латерита, содержащего никель, до уровня, составляющего от 1,0 до 3,0, приведение в контакт раствора выщелачивания латерита, содержащего никель, с отрегулированным рН с ионообменной смолой, включающей бис-пиколиламиновую функциональную группу, для того чтобы селективно по сравнению с двухвалентным и трехвалентным железом адсорбировать никель и медь, и выделение никеля.

Изобретение может быть использовано в химической промышленности. Для извлечения бериллия методом ионного обмена проводят измельчение бериллийсодержащей руды, ее сульфатизацию, выщелачивание, разделение пульпы.

Изобретение относится к многоколоночной ионообменной хроматографии, и может быть использовано в гидрометаллургии. .

Изобретение относится к способу извлечения молибдена из содержащего молибден сульфидного материала. .

Изобретение относится к способу циклонной плавки меди. Флюс смешивают с высушенным порошком медного концентрата с последующей подачей в сопло и в реакционную башню внутри плавильной печи через канал для подачи материала.

Изобретение относится к металлургическим процессам. Техническим результатом является дополнительное извлечение благородных, цветных, редких и редкоземельных металлов из пиритных концентратов, получаемых при переработке медно-порфировых руд.

Изобретение относится к способу плавки концентрата сульфида меди с высоким содержанием мышьяка. Способ содержит стадии смешивания концентрата с кварцевым песком и содержащим CaO материалом для получения смешанного материала, смешивания этого материала с кислородсодержащим реакционным газом и нагревания для проведения реакции.

Изобретение относится к цветной металлургии, а именно к биовскрытию и биовыщелачиванию цветных и благородных металлов из упорных сульфидных руд и отработанных штабелей кучного выщелачивания, и может использоваться в горнообогатительной, горно-химической, металлургической отраслях, в том числе на объектах в криолитозонах.

Изобретение может быть использовано для извлечения меди в присутствии других металлов из продукционных растворов сульфатного выщелачивания экстракцией органическим реагентом.

Способ получения меди высокой чистоты включает сульфатизирующий обжиг исходного медного концентрата и выщелачивание огарка с выделением меди электролизом. Сульфатизирующий обжиг проводят на воздухе, спек охлаждают до комнатной температуры и проводят ситование до фракции менее 1,0 мм.

Изобретение относится к способу извлечения металлов в виде цинка (II), меди (II) и кобальта (II) из водных растворов соляной кислоты. Способ включает их экстракцию бромидами проп-2-инил-, бут-2-инил, окт-2-инилтриоктиламмония, растворенными в толуоле.
Изобретение относится к получению окислителя сульфидов из сернокислых растворов железа (II) с использованием микроорганизмов и может быть использовано для растворения сульфидов меди, никеля, цинка, кобальта, мышьяка и железа и выщелачивания металлов из сульфидного минерального сырья, в частности из руд, продуктов и отходов горно-обогатительных и металлургических производств.

Изобретение относится к области металлургии цветных металлов, а именно к способам гидрометаллургической переработки твердофазных полиметаллических минеральных материалов с целью выделения из них меди и цинка.

Изобретение относится к переработки конвертерных шлаков медного производства. В ванную печь вместе с конвертерным шлаком, углеродсодержащим топливом и кислородсодержащим газом подают клинкер цинкового производства в количестве, определяемом по формуле Мкл=(1,0÷2,0)(3Feкл+14Cкл)Feшл/100, где Мкл - количество подаваемого клинкера, кг/т конверторного шлака, Feкл, - содержание металлического железа в клинкере, мас.%, Скл - содержание углерода в клинкере, мас.%, Feшл - содержание железа в конверторном шлаке, мас.%.

Группа изобретений относится к способу и устройству ускорения испарения воды с использованием солнечной энергии. Устройство для ускорения испарения воды выполнено из полимерного материала с плотностью 0,8-0,95 г/см3 и содержит плоское основание 1, на верхней и нижней поверхности которого размещены ребра 3.

Изобретение относится к очистке подотвальных вод ионитами и может быть использовано в горнодобывающей промышленности. Способ очистки подотвальных вод и технологических растворов от меди включает удаление содержащихся ионов железа и ионообменную очистку. Очистку проводят в два этапа. На первом этапе очистки в подотвальные воды и технологические растворы добавляют раствор щелочи до рН3,5-4 и удаляют содержащиеся ионы железа. На втором этапе подотвальные воды и технологические растворы, освобожденные от ионов железа, пропускают в динамическом режиме через колонку, загруженную медь-селективной ионообменной смолой - катионитом в водородной форме. Затем проводят одновременную десорбцию меди и регенерацию катионита 10-ным раствором H2SO4 до отрицательной реакции на ионы Cu2+ с получением концентрированного раствора сульфата меди. Изобретение позволяет очистить подотвальные воды и технологические растворы от меди с получением раствора сульфата меди, используемого в качестве целевого продукта. 1 з.п. ф-лы, 1 табл., 2 пр.

Наверх