Способ управления получением микрокапсулированного холинхлорида



Владельцы патента RU 2687022:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ") (RU)

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процесса получения микрокапсулированного холинхлорида из его водного раствора на основе активного адсорбента. Способ управления процессом получения микрокапсулированного холинхлорида предусматривает сушку активного адсорбента перегретым паром, его измельчение, смешивание с водным раствором холинхлорида, сушку полученной смеси и инкапсулирование желатином по заданной схеме, при этом по текущим значениям расхода, влажности исходного активного адсорбента и его влажности после первого этапа сушки устанавливают количество отработанного перегретого пара атмосферного давления, подаваемого на перегрев пара пониженного давления, а также устанавливают частоту и амплитуду колебаний вибрационной решетки в первой секции двухсекционной сушилки воздействием на регулируемый вибропривод решетки, по текущим значениям влажности адсорбента после первой секции, влажности и расхода адсорбента после второй секции определяют количество отработанного перегретого пара пониженного давления и количество охлаждающего воздуха, направляемых в конденсатор, а при отклонении текущего значения давления во второй секции сушилки от заданного воздействуют на регулируемый привод вакуум-насоса с коррекцией по влажности адсорбента на выходе из сушилки, по текущему значению температуры раствора желатина устанавливают расход конденсата отработанного перегретого пара атмосферного давления из первой секции калорифера, по текущему значению расхода сыпучего холинхлорида устанавливают расход подогретого раствора желатина воздействием на регулируемый привод насоса, по суммарному текущему значению расхода сыпучего холинхлорида и подогретого водного раствора холинхлорида устанавливают расход и температуру охлажденного воздуха воздействием соответственно на регулируемый привод вентилятора и мощность нагревательных элементов парогенератора с коррекцией по температуре готового продукта после охлаждения. Предлагаемый способ управления процессом получения микрокапсулированного холинхлорида позволяет получить готовый продукт, обладающий низкой гигроскопичностью за счет использования желатиновой капсулы, получить материальные потоки с различным тепловым потенциалом вследствие применения пароэжекторной холодильной машины, обеспечить точность и надежность управления на всех этапах производства готового продукта, за счет оперативного регулирования технологическими параметрами по текущим значениям влажности исходного адсорбента, полученным до осуществления процесса сушки, повысить качество готового продукта вследствие того, что сушка исходного адсорбента осуществляется в среде перегретого пара пониженного давления, температура которого меньше температуры перегретого пара атмосферного давления. 1 ил.

 

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процесса получения микрокапсулированного холинхлорида из его водного раствора на основе активного адсорбента в качестве, которого может быть использован свекловичный жом, яблочные выжимки, пивная дробина и т.п.

Наиболее близким по технической сущности и достигаемому эффекту является управление процессом получения сыпучей формы порошкообразного холинхлорида из его водного раствора [Патент № 2535559 РФ, A 23К 1/16 Способ управления процессом получения сыпучей формы холинхлорида на основе сухого свекловичного жома [Текст] / С.А. Шевцов, А.В. Дранников, А.А. Дерканосова, И.И. Амелин (Россия) – № 2013113599/13; заявлено 27.03.2013; опубликовано 20.12.2014; Бюл. № 28.], предусматривающий сушку активного адсорбента перегретым паром, его измельчение и смешивание с предварительно подогретым водным раствором холинхлорида, сушку смеси нагретым в двухсекционном калорифере атмосферным воздухом с получением сыпучего холинхлорида, отвод очищенного отработанного атмосферного воздуха на подогрев водного раствора холинхлорида перед подачей его на смешивание, подачу отработанного перегретого пара на перегрев с образованием контура рециркуляции, регулирование расхода и температуры перегретого пара по текущим значениям расхода и влажности активного адсорбента, а также регулирование расхода и температуры нагретого атмосферного воздуха по текущим значениям расхода и влажности смеси активного адсорбента и водного раствора холинхлорида.

Однако известное изобретение имеет следующие недостатки:

- готовый продукт обладает высокой гигроскопичностью, в связи, с чем его необходимо транспортировать в специальной упаковке;

- в разработанном способе не предусмотрено использование пароэжекторной холодильной машины для получения материальных потоков с различным тепловым потенциалом;

- не полностью используется теплота отработанных теплоносителей, что приводит к повышенным энергозатратам.

- не позволяет обеспечить точность и надежность управления, что связано с отсутствием системы стабилизации технологических характеристик производства готового продукта как со стороны изменения начальной влажности исходного адсорбента, так и со стороны возможных технологических сбоев вспомогательного оборудования.

- невысокое качество готового продукта из-за того, что сушка исходного адсорбента осуществляется в среде перегретого пара при высоких температурах.

Технической задачей изобретения является повышение точности и надежности управления, качества готового продукта и энергетической эффективности способа получения микрокапсулированного холинхлорида.

Поставленная техническая задача достигается тем, что в способе управления получением микрокапсулированного холинхлорида, предусматривающем сушку активного адсорбента перегретым паром, его измельчение и смешивание с предварительно подогретым водным раствором холинхлорида, сушку смеси нагретым в двухсекционном калорифере атмосферным воздухом с получением сыпучего холинхлорида, отвод очищенного отработанного атмосферного воздуха на подогрев водного раствора холинхлорида перед подачей его на смешивание, подачу отработанного перегретого пара на перегрев с образованием контура рециркуляции, регулирование расхода и температуры перегретого пара по текущим значениям расхода и влажности активного адсорбента, а также регулирование расхода и температуры нагретого атмосферного воздуха по текущим значениям расхода и влажности смеси активного адсорбента и водного раствора холинхлорида новым является то, что сушку активного адсорбента осуществляют в два этапа в двухсекционной сушилке вначале в виброкипящем слое перегретым паром атмосферного давления, а затем в кипящем слое перегретым паром пониженного давления, при этом отработанный перегретый пар из первой секции сушилки разделяют на два потока, один из которых направляют на перегрев и далее возвращают в первую секцию с образованием контура рециркуляции, а второй поток, в количестве испарившейся влаги из адсорбента на первом этапе, подают на перегрев пара пониженного давления, отработанный перегретый пар пониженного давления из второй секции сушилки разделяют на два потока, один из которых после перегрева возвращают во вторую секцию сушилки с образованием контура рециркуляции, а другой поток, в количестве испарившейся влаги из адсорбента на втором этапе, направляют в конденсатор, где происходит его конденсация, причем не сконденсировавшиеся газы вакуум-насосом отводят в окружающую атмосферу, при этом полученный после сушки воздухом сыпучий холинхлорид подают на микрокапсулирование путем нанесения на его поверхность подогретого раствора желатина и далее на охлаждение с образованием готового продукта; для получения холодных и горячих потоков теплоносителей используют пароэжекторную холодильную машину, состоящую из эжектора, конденсатора в качестве которого используют пароперегреватель атмосферного давления, испарителя, теплообменника-рекуператора, терморегулирущего вентиля, парогенератора, при чем смесь рабочего пара и эжектируемых паров через ресивер для пара направляют на перегрев пара атмосферного давления, а образовавшийся конденсат во вторую секцию калорифера, который затем возвращают в парогенератор с образованием контура рециркуляции; образовавшийся конденсат второго потока отработанного перегретого пара атмосферного давления вначале подают в первую секцию калорифера, далее на подогрев раствора желатина и затем возвращают в парогенератор с образованием контура рециркуляции; отработанный атмосферный воздух после нагревателя подают в теплообменник-рекуператор для охлаждения, а затем разделяют на два потока один из которых через ресивер для воздуха направляют в конденсатор для конденсации отработанного перегретого пара пониженного давления с последующей подачей в двухсекционный калорифер, а другой в охладитель на охлаждение капсул, и далее в двухсекционный калорифер вместе с воздухом после конденсатора направляют на сушку смеси измельченного активного адсорбента и подогретого водного раствора холинхлорида с образованием контура рециркуляции; по текущим значениям расхода, влажности исходного активного адсорбента и его влажности после первого этапа сушки устанавливают количество отработанного перегретого пара атмосферного давления, подаваемого на перегрев пара пониженного давления, а также устанавливают частоту и амплитуду колебаний вибрационной решетки в первой секции двухсекционной сушилки воздействием на регулируемый вибропривод решетки; по текущим значениям влажности адсорбента после первой секции влажности и расхода адсорбента после второй секции определяют количество отработанного перегретого пара пониженного давления и количество охлаждающего воздуха, направляемых в конденсатор, а при отклонении текущего значения давления во второй секции сушилки от заданного, воздействуют на регулируемы привод вакуум-насоса с коррекцией по влажности адсорбента на выходе из сушилки; по текущему значению температуры раствора желатина устанавливают расход конденсата отработанного перегретого пара атмосферного давления из первой секции калорифера; по текущему значению расхода сыпучего холинхлорида устанавливают расход подогретого раствора желатина воздействием на регулируемый привод насоса; по суммарному текущему значению расхода сыпучего холинхлорида и подогретого водного раствора холинхлорида устанавливают расход и температуру охлажденного воздуха воздействием соответственно на регулируемый привод вентилятора и мощность нагревательных элементов парогенератора с коррекцией по температуре готового продукта после охлаждения.

Технический результат изобретения заключается повышение точности и надежности управления, качества готового продукта и энергетической эффективности способа получения сыпучей формы холинхлорида.

На фиг. 1 представлена схема, реализующая предлагаемый способ.

Схема содержит двухсекционную сушилку 1; дробилку 2; просеиватель 3; смеситель 4; сушилку 5; циклон-очиститель 6; капсулятор 7; охладитель капсул 8; пароперегреватель атмосферного давления 9; пароперегреватель пониженного давления 10; вентилятор атмосферного давления 11; вентилятор пониженного давления 12; вентиляторы 13, 14; двухсекционный калорифер 15; емкость для желатина 16; насосы 17, 18; насос для желатина 19; насос для подачи водного раствора холинхлорида 20; вакуум-насос 21; конденсатор 22; нагреватель водного раствора холинхлорида 23; эжектор 24; теплообменник-рекуператор 25; испаритель 26; сборник конденсата 27; парогенератор 28; терморегулирующий вентиль 29; предохранительный клапан 30; ресивер для пара 31; ресивер для воздуха 32; микропроцессор 33; линии: 0.2 – подачи исходного адсорбента, 0.2.1 – подачи сухого адсорбента на измельчение, 0.2.2 – подачи сыпучего адсорбента и водного раствора холинхлорида на сушку, 0.2.3 – подачи сыпучего холинхлорида на капсулирование, 0.2.4 – отвода готового продукта, 1.0 – отвода конденсата отработанного перегретого пара атмосферного и пониженного давления, 2.0 – подачи перегретого пара атмосферного давления в первую секцию сушилки 1, 2.1 – отвода отработанного перегретого пара атмосферного давления из 1 секции сушилки 1, 2.2 – отвода отработанного перегретого пара пониженного давления из секции 2 сушилки 1, 2.3 – подачи смеси рабочего пара и эжектируемых паров в пароперегреватель атмосферного давления, 2.4 – подачи перегретого пара пониженного давления во 2 секцию сушилки 1, 3.0 – подачи воздуха на нагрев, 3.1 – подачи нагретого воздуха в сушилку 5, 3.2- отвода отработанного воздуха сушилки 5, 3.3 – подачи отработанного воздуха на охлаждение, 3.4 – подачи холодного воздуха в конденсатор и на охлаждение готового продукта, 4.0 – подачи водного раствора холинхлорида на подогрев, 4.1 – подачи подогретого водного раствора холинхлорида на смешивание, 5.0 – подачи подогретого раствора желатина на микрокапсулирование; датчики: FE – расхода, WE – влажности, TE – температуры, PE – давления, HE – уровня; nE – частоты колебаний, AE – амплитуды колебаний, И – исполнительные механизмы.

Способ осуществляется следующим образом.

Влажный материал подают в секцию сушки перегретым паром атмосферного давления по линии 0.2 двухсекционной сушилки 1, где происходит сушка в импульсном виброкипящем слое. В качестве сушильного агента используют перегретый пар атмосферного давления. При этом отработанный перегретый пар из первой секции сушилки 1 разделяют на два потока. Один из которых подают в пароперегреватель атмосферного давления 9, а затем возвращают первую секцию сушилки 1 с образованием контура рециркуляции, а другой поток в количестве образовавшимся в процессе сушки продукта на первом этапе, направляют в пароперегреватель пониженного давления 10. Отработанный перегретый пар пониженного давления из второй секции сушилки 1 разделяют на два потока, один из которых подают вентилятором 12 в пароперегреватель пониженного давления 10 для перегрева, а затем возвращают во вторую секцию с образованием контура рециркуляции, а другой поток пара в количестве, образовавшимся в процессе сушки адсорбента на втором этапе, направляют в конденсатор 18, где происходит его конденсация и предварительный нагрев атмосферного воздуха через разделяющую стенку конденсатора.

Образовавшийся конденсат греющего пара по линии 1.0 из пароперегревателя атмосферного давления 9 и конденсат отработанного перегретого пара атмосферного давления из пароперегревателя пониженного давления 10 подают по линии 1.0 в двухсекционный калорифер 15 для окончательного нагрева атмосферного воздуха через разделяющую стенку калорифера 15.

Полученные сухой адсорбент направляют по линии 0.2.1 на измельчение, фракционируют, причем сход сита направляют на доизмельчение в дробилку 2, а проход через сито просеивающей машины 3 смешивают с предварительно нагретым водным раствором холинхлорида, который подают по линии 4.1, в соотношении 2:3 в смесителе 4. Далее полученную смесь подают по линии 0.2.2 в сушилку 5, где осуществляют ее сушку в кипящем слое подогретым атмосферным воздухом, подаваемый по линии 3.1.

Отработанный атмосферный воздух из сушилки 5 сначала направляют по линии 3.2 на очистку в циклон-очиститель 6, а затем по линии 3.3 в нагреватель 23 для подогрева исходного раствора холинхлорида перед подачей его в смеситель.

Полученную после очистки мелкодисперсную фракцию холинхлорида объединяют с потоком готового порошкообразного холинхлорида после сушилки 5, затем направляют по линии 0.2.3 на капсулирование в капсуляторе 7 путем нанесения на его поверхность подогретого раствора желатина подаваемого насосом по линии 5.0 из емкости 16. Подогрев осуществляют конденсатом отработанного перегретого пара атмосферного давления, полученные капсулы направляют в охладитель 8, из которого их выводят по линии 0.2.4 в виде готового продукта.

Для получения холодных и горячих потоков теплоносителей используют пароэжекторную холодильную машину, состоящую из эжектора 24, конденсатора, в качестве которого используют пароперегреватель атмосферного давления 9, испарителя 26, теплообменника-рекуператора 25, терморегулирущего вентиля 29, парогенератора 28. Смесь рабочего пара и эжектируемых паров после эжектора 24 направляют сначала ресивер для пара 31, а затем по линии 2.3 в пароперегреватель атмосферного давления 9 для перегрева пара атмосферного давления, а образовавшийся конденсат во вторую секцию калорифера 15, который затем возвращают по линии 1.0 насосом 18 в парогенератор 28 с образованием контура рециркуляции. Отработанный атмосферный воздух после нагревателя 23 попадает в теплообменник-рекуператор 25 для охлаждения, а затем разделяется на два потока, один из которых направляют по линии 3.4 сначала в ресивер для воздуха 32, а затем в конденсатор 22 для конденсации отработанного перегретого пара пониженного давления с последующей подачей в двухсекционный калорифер 15, а другой по линии 3.4 вентилятором 14 в охладитель 8 на охлаждение капсул, и далее в двух секционный калорифер 15 вентилятором 13 вместе с воздухом после конденсатора 22 направляют в сушилку с образованием замкнутого контура.

По текущему значению расхода и влажности исходного адсорбента по линии 0.2 микропроцессором 33 с помощью исполнительного механизма регулируемого привода вентилятора 11 устанавает необходимый расход перегретого пара атмосферного давления в линии 2.0, а изменением расхода смеси рабочего пара и эжектируемых паров в линии 2.3 необходимую температуру с коррекцией по текущему значению влажности адсорбента во 2 секции сушилки 1. По текущим значениям расхода, влажности исходного адсорбента в линии 0.2, его влажности после первого этапа сушки в сушилке 1 микропроцессором 33 по средством исполнительного механизмав линии 2.1 устанавливает количество отработанного перегретого пара атмосферного давления подаваемого на перегрев пара пониженного давления в пароперегреватель 10, а также микропроцессор 33 устанавливает необходимую частоту и амплитуду колебаний вибрационной решетки в первой секции сушилки 1 с помощью исполнительного механизма регулируемого виброприводом решетки.

По текущему значению влажности адсорбента после первой секции сушилки 1, влажности и расхода адсорбента в линии 0.2.1 после второй секции микропроцессором 33 устанавливает количество отработанного перегретого пара пониженного давления исполнительным механизмом установленным в линии 2.2 и количество охлаждающего воздуха с помощью исполнительного механизма в линии 3.4 после ресивера для воздуха 32. При этом при отклонении текущего значения давления измеряемого датчиком установленным во второй секции сушилки 1 от заданного микропроцессором 33 с помощью исполнительного механизма регулируемого привода вакуумного насоса 21 устанавливает необходимый расход несконденсированных газов с коррекцией по влажности адсорбента на выходе из сушилки 1в линии 0.2.1. По информации датчика о текущем значении температуры раствора желатина в емкости 16 микропроцессор 33 устанавливает с помощью исполнительного механизма расход конденсата отработанного пара атмосферного давления из первой секции калорифера 15. По текущему значению расхода сыпучего холинхлорида в линии 0.2.3 микропроцессором 33 с помощью исполнительного механизма регулирующего привода насоса 19, устанавливают необходимый расход раствора желатина в линии 5.0. По суммарному текущему значению расхода сыпучего холинхлорида в линии 0.2.3 и подогретого водного раствора холинхлорида в линии 5.0 микропроцессора 33 по средством исполнительного механизма регулируемого привода вентилятора 14 устанавливает расход холодного воздуха в линии 3.4 направляемого в охладитель капсул 8, а изменение мощности нагревательных элементов парогенератора 28 и его температуру с коррекцией по текущему значению температуры готового продукта в линии 0.2.4. По текущему значению уровня конденсата в парогенераторе 28 микропроцессор 33 осуществляет двухпозиционное регулирование, увеличением мощности на регулируемый привод насоса 18, по средством исполнительного механизма в случае уменьшения уровня ниже заданного значения и сбросом избытка конденсата в случае увеличения уровня выше заданного значения. В случае технологических и аварийных сбоев в работе парогенератора 28 связанных с возможным увеличением давления греющего пара в его рабочем объеме предусмотрен предохранительный клапан 30.

Таким образом, предлагаемый способ управления процессом получения микрокапсулированного холинхлорида, по сравнению с известным, позволяет:

- получить готовый продукт, обладающий низкой гигроскопичностью за счет использования желатиновой капсулы;

- получить материальные потоки с различным тепловым потенциалом вследствие применения пароэжекторной холодильной машины;

- обеспечить точность и надежность управления на всех этапах производства готового продукта, за счет оперативного регулирования технологическими параметрами по текущим значениям влажности исходного адсорбента, полученным до осуществления процесса сушки;

- повысить качество готового продукта вследствие того, что сушка исходного адсорбента осуществляется в среде перегретого пара пониженного давления, температура которого меньше температуры перегретого пара атмосферного давления.

Способ управления получением микрокапсулированного холинхлорида, предусматривающий сушку активного адсорбента перегретым паром, его измельчение и смешивание с предварительно подогретым водным раствором холинхлорида, сушку смеси нагретым в двухсекционном калорифере атмосферным воздухом с получением сыпучего холинхлорида, отвод очищенного отработанного атмосферного воздуха на подогрев водного раствора холинхлорида перед подачей его на смешивание, подачу отработанного перегретого пара на перегрев с образованием контура рециркуляции, регулирование расхода и температуры перегретого пара по текущим значениям расхода и влажности активного адсорбента, а также регулирование расхода и температуры нагретого атмосферного воздуха по текущим значениям расхода и влажности смеси активного адсорбента и водного раствора холинхлорида, отличающийся тем, что сушку активного адсорбента осуществляют в два этапа в двухсекционной сушилке вначале в виброкипящем слое перегретым паром атмосферного давления, а затем в кипящем слое перегретым паром пониженного давления, при этом отработанный перегретый пар из первой секции сушилки разделяют на два потока, один из которых направляют на перегрев и далее возвращают в первую секцию с образованием контура рециркуляции, а второй поток, в количестве испарившейся влаги из адсорбента на первом этапе, подают на перегрев пара пониженного давления, отработанный перегретый пар пониженного давления из второй секции сушилки разделяют на два потока, один из которых после перегрева возвращают во вторую секцию сушилки с образованием контура рециркуляции, а другой поток, в количестве испарившейся влаги из адсорбента на втором этапе, направляют в конденсатор, где происходит его конденсация, причем не сконденсировавшиеся газы вакуум-насосом отводят в окружающую атмосферу, при этом полученный после сушки воздухом сыпучий холинхлорид подают на микрокапсулирование путем нанесения на его поверхность подогретого раствора желатина и далее на охлаждение с образованием готового продукта; для получения холодных и горячих потоков теплоносителей используют пароэжекторную холодильную машину, состоящую из эжектора, конденсатора в качестве которого используют пароперегреватель атмосферного давления, испарителя, теплообменника-рекуператора, терморегулирующего вентиля, парогенератора, причем смесь рабочего пара и эжектируемых паров через ресивер для пара направляют на перегрев пара атмосферного давления, а образовавшийся конденсат - во вторую секцию калорифера, который затем возвращают в парогенератор с образованием контура рециркуляции; образовавшийся конденсат второго потока отработанного перегретого пара атмосферного давления вначале подают в первую секцию калорифера, далее на подогрев раствора желатина и затем возвращают в парогенератор с образованием контура рециркуляции; отработанный атмосферный воздух после нагревателя подают в теплообменник-рекуператор для охлаждения, а затем разделяют на два потока, один из которых через ресивер для воздуха направляют в конденсатор для конденсации отработанного перегретого пара пониженного давления с последующей подачей в двухсекционный калорифер, а другой - в охладитель на охлаждение капсул, и далее в двухсекционный калорифер вместе с воздухом после конденсатора направляют на сушку смеси измельченного активного адсорбента и подогретого водного раствора холинхлорида с образованием контура рециркуляции; по текущим значениям расхода, влажности исходного активного адсорбента и его влажности после первого этапа сушки устанавливают количество отработанного перегретого пара атмосферного давления, подаваемого на перегрев пара пониженного давления, а также устанавливают частоту и амплитуду колебаний вибрационной решетки в первой секции двухсекционной сушилки воздействием на регулируемый вибропривод решетки; по текущим значениям влажности адсорбента после первой секции влажности и расхода адсорбента после второй секции определяют количество отработанного перегретого пара пониженного давления и количество охлаждающего воздуха, направляемых в конденсатор, а при отклонении текущего значения давления во второй секции сушилки от заданного воздействуют на регулируемый привод вакуум-насоса с коррекцией по влажности адсорбента на выходе из сушилки; по текущему значению температуры раствора желатина устанавливают расход конденсата отработанного перегретого пара атмосферного давления из первой секции калорифера; по текущему значению расхода сыпучего холинхлорида устанавливают расход подогретого раствора желатина воздействием на регулируемый привод насоса; по суммарному текущему значению расхода сыпучего холинхлорида и подогретого водного раствора холинхлорида устанавливают расход и температуру охлажденного воздуха воздействием соответственно на регулируемый привод вентилятора и мощность нагревательных элементов парогенератора с коррекцией по температуре готового продукта после охлаждения.



 

Похожие патенты:

Группа изобретений касается управления работой насосной системы (НС), насосные агрегаты (НА) которой, например на площадях фонтанов, могут вводиться в эксплуатацию в разном количестве и эксплуатироваться с разным числом оборотов.

Изобретение относится к способу динамического управления техническими средствами. Осуществляют прием первой неформализованной входной последовательности символов, включающей идентификационный признак, вводят код размещения для проверки принятых последовательностей, аналогичным образом принимают другие неформализованные последовательности символов и записывают их в адрес постоянного запоминающегося устройства в соответствии с их кодом размещения, производят контроль всей совокупности принятых последовательностей, формируют команды управления при положительном результате проверки для использования их при изменении режимов работы технических средств.

В настоящем изобретении предлагается способ инвертирования потока с непрерывной нефтяной фазой в поток с непрерывной водной фазой и достижения одного или более требуемых параметров добычи в скважине, добывающей текучую среду, содержащую нефть и воду, или инвертирования потока с непрерывной нефтяной фазой в поток с непрерывной водной фазой и достижения одного или более требуемых параметров транспортировки в трубопроводе, транспортирующем текучую среду, содержащую нефть и воду, причем в скважине или транспортном трубопроводе имеется насос, при этом способ содержит следующие шаги: (а) уменьшают частоту вращения насоса до тех пор, пока не будет выполнена инверсия из потока с непрерывной нефтяной фазой в поток с непрерывной водной фазой или не будет достигнуто заданное условие остановки; (b) если инверсия не была выполнена на шаге (а), регулируют давление на устье скважины или давление на приемной стороне транспортного трубопровода для выполнения инверсии; (с) стабилизируют поток при условии, достигнутом на шагах (а) или (b); и (d) осторожно регулируют одно или оба из давления на устье скважины и частоты вращения насоса для достижения одного или более требуемых параметров добычи.

Изобретение относится к резервированным управляющим системам, в частности к системам для управления приводами. Техническим результатом заявленного изобретения является повышение надежности устройства и точности управления приводами за счет автоматического переключения на исправный канал при управлении нерезервированной нагрузкой (резервированной дублированием) и уменьшения влияния дестабилизирующих факторов на точность управления.

Группа изобретений относится к зарядке аккумуляторов электрического транспортного средства. Способ планирования зарядки электрического транспортного средства заключается в следующем.

Изобретение относится к способам управления системой транспортного средства с исполнительным механизмом, линейным или нелинейным. Сформированную псевдоинверсную кусочно-билинейную модель адаптируют на основании выходного сигнала регулятора с обратной связью для улучшения опережающего регулирования.

Изобретение относится к автоматическому регулированию. Система связи управления удаленными объектами содержит соединенные прямую и передаточную среду, идентификатор, формирователь регулирующего воздействия.

Изобретение относится к устройству (аппарату) и к способу для управления транспортной сетью. Техническим результатом является улучшение функционирования транспортной сети для оптимизации добычи нефтяных и газовых скважин.

Изобретение относится к системе управления автоматизированных электроприводов. Устройство для управления электромеханической системой содержит первый элемент сравнения, регулятор, второй элемент сравнения, силовой преобразователь, измерительный блок, безынерционное звено обратной связи по скорости с коэффициентом передачи K1, безынерционное звено обратной связи по току с коэффициентом передачи K2, безынерционное звено обратной связи по напряжению с коэффициентом передачи K3, блок обратной связи, усилитель и блок интеграторов.

Комплекс для моделирования химико-технологических процессов содержит задающее устройство, вычитатель, блок оптимизации, блок управления, матрицу фильтров, два преобразующих модуля, датчики температуры, давления и расхода технологической жидкости, электрореле, электродвигатель, соединенные определенным образом.

Изобретение относится, в частности, к пищевой промышленности и биотехнологии. В прессованные хлебопекарные дрожжи Saccharomyces cerevisiae добавляют воду.

Изобретение относится к мясной промышленности, в частности к производству диетических мясорастительных продуктов. Способ включает подготовку и измельчение мясного или мясного и растительного сырья, приготовление фарша путем перемешивания мясного или мясного и растительного сырья с введением водоросли фукус.
Изобретение относится к пищевой промышленности и может быть использовано в рационе питания обычных людей и спортсменов для контроля массы тела. Композиция для контроля массы тела содержит смесь, включающую масло сафлоровое (Carthamus tinctorius), лецитин соевый обезжиренный, кофеин, экстракт коры йохимбе (Pausinystalia johimbe), масляный экстракт перца красного (Capsicum annuum L), экстракт зеленого чая (Camellia sinensis), экстракт корней имбиря лекарственного (Zingiber officinale Rosc.), пиколинат хрома при следующем содержании исходных компонентов на 1000 мг композиции: масло сафлоровое - 870-920 мг, лецитин соевый обезжиренный - 35-45 мг, кофеин - 26-32 мг, экстракт коры йохимбе (Pausinystalia johimbe) - 16-20 мг, масляный экстракт перца красного (Capsicum annuum L) - 5-8 мг, экстракт зеленого чая (Camellia sinensis) - 12-16 мг, экстракт корней имбиря лекарственного (Zingiber officinale Rosc.) - 1-2 мг и пиколинат хрома - 0,4-0,6 мг.

Изобретение относится к пищевой промышленности и может быть использовано в общественном питании для приготовления суши-сэндвича, суши, роллов, кулинарных изделий из рыбы, риса и овощей.

Изобретение относится к мясоперерабатывающей промышленности и может быть использовано для изготовления сушено-вяленого продукта типа джерки. Способ производства сыровяленого цельномышечного продукта из мяса птицы, обогащенного пергой пчелиной, включает маринование кусков мясного сырья с добавками, сушку при постоянной циркуляции воздуха, резку.

Изобретение относится к пищевой промышленности, а именно к способу производства пищевого продукта из зерновой фасоли. Способ включает сепарацию семян зерновой фасоли, мойку, проращивание, дробление, варку, смешивание компонентов, их взбивание в течение 3-5 мин.

Изобретение относится к пищевой промышленности и может быть использовано для приготовления злаковых батончиков, предназначенных для питания работающих с соединениями фтора, щелочными металлами и хлором.

Изобретение относится к пищевой промышленности и может быть использовано для улучшения потребительских свойств продуктов, которые необходимо размягчить, т.е. увеличить межструктурные расстояния и ослабить межструктурное взаимодействие.

Изобретение относится к безалкогольной и пищеконцентратной отраслям пищевой промышленности, а именно к производству безалкогольных коллагенсодержащих напитков функционального назначения.

Изобретение относится к мясной промышленности и может быть использовано при изготовлении колбасных изделий с добавлением растительного сырья. Способ включает подготовку мясного сырья, измельчение мясного сырья, смешивание его с солью, выдержку мясного сырья в посоле, приготовление фарша с добавлением всех рецептурных ингредиентов, наполнение оболочек фаршем, обжарку в стационарных камерах с последующей варкой и охлаждение.

Изобретение относится к ветеринарии, в частности к способам приготовления биологически активной добавки (БАД) и средству на его основе для животных. Способ приготовления БАД включает сбор 9-10-дневных личинок трутней, хранение до использования с последующей гомогенизацией.
Наверх