Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С. Литейный сплав на основе магния содержит, мас.%: неодим 3-4,5, иттрий 3-4, цинк 0,15-0,8, цирконий 0,4-1,0, магний и примеси - остальное. Сплав характеризуется высокими значениями сопротивления на разрыв, относительного удлинения после термообработки по режиму Т6, а также высокой коррозионной стойкостью и температурой эксплуатации до 250°С. 2 ил.

 

Изобретение относится к области металлургии, конкретно к сплавам на основе магния, и может быть использовано для получения фасонных отливок, обладающих сочетанием хороших прочностных свойств при комнатной и повышенной температурах, а также повышенной стойкостью сплава к окислению в процессе плавки и эксплуатации изделий из него.

Сплавы на основе магния обладают хорошей прочностью и низким удельным весом, поэтому они часто применяются в авиакосмической промышленности, в частности в деталях вертолетной трансмиссии и реактивных двигателей. В течение последних двадцати лет были осуществлены разработки сплавов, в которых сочетается хорошая коррозионная стойкость без значительной потери прочности при повышенных температурах (до 200°С).

Конкретной областью исследования были сплавы на основе магния, которые содержат редкоземельные элементы, в т.ч. иттрий, и до 1 мас. % цирокния. Например, в патенте RU 2513323 С2 (опубликован 20.04.2014 Бюл. No 11 МАГНЕЗИУМ ЭЛЕКТРОН ЛИМИТЕД (GB)) описан сплав, который содержит, мас. %: Y 2,0-6,0; Nd 0,05-4,0; Gd 0-1,0; Dy 0-1,0; Er 0-1,0; Zr 0,05-1,0; Zn+Mn<0,11; Yb 0-0,02; Sm 0-0,04; Al<0,3; Li<0,2 и при необходимости, редкоземельные металлы и тяжелые редкоземельные металлы (общее содержание Gd, Dy и Er составляет 0,3-12 мас. %.), содержание каждого из следующих элементов: Се, La, Zn, Fe, Si, Cu, Ag и Cd 0-0,06; Ni 0-0,003, магний и примеси - остальное. Из документа GB 2095288 А (опубликован 29.09.1982 MAGNESIUM ELEKTRON LTD) известно, что присутствие тяжелых РЗМ совместно с легкими РЗМ придает магниевым сплавам хорошие механические свойства при повышенных температурах. Сплав имеет хорошие коррозионные свойства, обрабатываемость и пластичность.

В документе WO 2006125278 А1 (опубликован 30.11.2006 CAST CENTRE PTY LTD [AU/AU]; Building 43, Cooper Road, St Lucia, Queensland 4067 (AU)) описывается сплав, предназначенный для литья под давлением и содержащий 0,2-1,5 мас. % Zn, редкоземельные элементы и иттрий в количествах, которые попадают в четырехугольник, определяемый линиями АВ, ВС, CD и DA, где (в мас. %): А (1,8% RE - 0,05% Y); В (1,0% RE - 0,05% Y); С (0,2% RE - 0,8% Y); a D (1,8% RE - 0,8% Y). Недостатком данного сплава является высокое допустимое содержание цинка, при котором сплав будет склонен к образованию горячих трещин при гравитационном литье.

Известны также промышленные сплавы, например МЛ19, используемый преимущественно для литья в песчаные формы, также известны сплавы WE43 и WE54 (ГОСТ 2856-79 и Н.Е. Chandler, Heat treater's guide: practices and procedures for nonferrous alloys, ASM International, Materials Park, 1996).

Недостатком сплавов WE43 и WE54 является использование большого (до 2% тяжелых РЗМ (Tb, Er, Dy и Gd)) количества дорогостоящих тяжелых РЗМ в качестве легирующих элементов, что не только увеличивает стоимость сплава, но и ведет к утяжелению отливок. Кроме того Полмеар (Я. Полмеар Легкие сплавы: от традиционных до нанокристаллов, М.: Техносфера, 2008. - 464 с. ) утверждает, что в сплавах с большим количеством иттрия при длительном нахождении при температуре 150°С пластичность постепенно снижается до неприемлемого уровня. В то же время в сплав МЛ19 добавляется гораздо меньшее количество иттрия, а тяжелые РЗМ не используются. При этом недостаток РЗМ в некоторой степени компенсируется наличием цинка. В то же время, снижение количества иттрия плохо сказывается на сопротивляемости жидкого сплава МЛ19 к возгоранию.

Наиболее близким к предложенному является сплав, описанный в патенте US 6767506 (опубликован в 2004 г., Brofin Boris, etc., Dead Sea Magnesium Ltd.)

Речь идет о магниевом сплаве с улучшенными свойствами при повышенных температурах и хорошей коррозионной стойкостью в солевом тумане. Сплав содержит, по меньшей мере, 92 мас. % магния, от 2,7 до 3,3% мас. неодима; от 0,0 до 2,6% мас. иттрия, от 0,2 до 0,8% мас. цинка, от 0,03 до 0,25% мас. кальция и от 0,2 до 0,8% мас. циркония, за исключением примесей часто встречающихся в магниевых сплавах и в промышленных сплавах МЛ19, WE43 и WE54. В отличие от предлагаемого состава этот сплав содержит кальций, введение которого в магниевый сплав сопряжено с большими технологическими сложностями и приводит к загрязнению расплава неметаллическими включениями. Кроме того, применение защитных газовых сред с активными добавками, способствующими образованию защитной плены на поверхности расплава, для сплавов, содержащих кальций, ведет к его повышенному угару.

Техническим результатом изобретения является создание нового магниевого сплава с повышенной, относительно традиционно используемого в промышленности сплава МЛ19 температурой эксплуатации и возгорания, который можно плавить с использованием меньшего количества защитных газов и заливать на воздухе с минимальным использованием ингибиторов горения магния. Сплав должен иметь мелкозернистую структуру без применения операции модифицирования. Сплав не должен содержать в составе дорогостоящих и дефицитных тяжелых РЗМ.

Технический результат достигается тем, что сплав на основе магния, содержащий неодим, иттрий, цинк и цирконий содержит компоненты в следующем количестве, мас. %:

Изобретение поясняется чертежом, где на фиг. 1. показано литое состояние ммикроструктуры сплава Mg осн.; 4,3% Nd; 4,0% Y; 0,8% Zr; 0,6% Zn (ОМ травлено), а на фиг. 2. показана микроструктура сплава Mg осн.; 4,3% Nd; 4,0% Y; 0,8% Zr; 0,6% Zn в термообработанном состоянии по режиму Т6 (отжиг при 525°С 8 часов с закалкой в горячей воде и последующим старением при 250°С 10 часов) (ОМ травлено). Сплав должен иметь температуру эксплуатации до 250°С;

В сплаве содержится цирконий, вследствие чего наблюдается выраженный эффект модифицирования литой структуры сплава за счет появления мелкодисперсных частиц твердого раствора на основе циркония, служащих центрами кристаллизации твердого раствора на основе магния. Ограничения по содержанию циркония (1%) связаны с невозможностью его ввода в большем количестве при применяемой на практике температуре плавки сплава (максимум 800°С, рекомендуемая 740-760°С при кратковременном увеличении до 780°С). Рекомендуемое количество циркония в сплаве 0,6-0,8%. При этом эффект измельчения структуры максимален и в структуре сплава отсутствует нерастворенный цирконий. Ограничение по содержанию цинка связано с повышенной склонностью сплава к образованию горячих трещин при большом содержании цинка.

Сплавы WE43 и WE54 практически не содержат цинка. Допускается наличие цинка, как примеси в количестве до 0,2%. В отличие от них, в предлагаемом сплаве цинк является обязательным легирующим компонентом и добавляется в количестве 0,15-0,8%.

Авторами было установлено, что добавка цинка в количестве 0,6% мас. несколько увеличивает относительное удлинение сплава (с 3% до 5%) при сохранении практически неизменной прочности относительно сплава без цинка.

Наличие РЗМ и циркония в сплаве благотворно влияет на склонность сплава к образованию газовой пористости в отливке, поскольку цирконий связывает водород, растворенный в металле в тугоплавкие гидриды, а РЗМ сужают интервал кристаллизации сплава.

Сплав может быть использован для получения отливок методом литья в землю, в ХТС, в кокиль и форму, изготовленную с применением аддитивных технологий, для литья под низким и регулируемым газовым давлением. Для достижения максимальных механических свойств необходима термообработка по режиму Т6 (закалка сплава после высокотемпературного отжига с последующим старением). Сплав имеет удовлетворительную коррозионную стойкость благодаря содержанию РЗМ и циркония, удаляющего из расплава вредные примеси, прежде всего, железа. Коренным отличием структуры сплавов WE43 и WE54 от предлагаемого, является отсутствие в структуре сплава LPSO фазы содержащей цинк.

В предлагаемом сплаве основным упрочнителем является фаза Mg41Nd5, способствующая получению высоких механических свойств в процессе термообработки литых деталей за счет дисперсионного упрочнения при старении по режиму Т6. Ограничение верхнего предела содержания иттрия на уровне 4% и нижнего предела содержания неодима на уровне 3% обусловлено стремлением исключить образование в процессе старения избыточной фазы Mg24Y5, снижающей, по мнению авторов, пластичность сплава при длительной эксплуатации изделий из него при температуре выше 100°С.

Для сплава рекомендуются следующие режимы термообработки: Высокотемпературная обработка при температуре 525-530°С в течение 7-10 часов в зависимости от толщины стенки отливки с последующей закалкой в горячей воде либо в интенсивном потоке воздуха. Для достижения максимальной прочности сплав рекомендуется старить для деталей, длительно работающих при повышенной температуре - при 250°С в течение 9-10 часов с последующим охлаждением на воздухе, для деталей, работающих при температуре до 200°С - при 200°С в течение 20 часов с последующим охлаждением на воздухе.

Увеличение времени старения сплава более 20 часов приводит к дальнейшему увеличению прочности сплава, но это нецелесообразно в производственных условиях.

Сущность изобретения состоит в следующем:

Разработан сплав на основе магния для получения литых деталей, имеющий высокие прочностные свойства, хорошую коррозионную стойкость относительно аналогов и хорошую сопротивляемость к возгоранию на воздухе.

Концентрация иттрия в заявленных пределах обеспечивает высокую температуру возгорания, повышенную рабочую температуру сплава. Цирконий обеспечивает мелкозернистую структуру, снижение содержания растворенного водорода и, как следствие, высокие технологические и эксплуатационные свойства сплава. Частицы вторичных выделений упрочняющей фазы содержащей неодим обеспечивают высокую склонность сплава к упрочнению в результате термической обработки. Наличие цинка повышает коррозионную стойкость, и немного увеличивает относительное удлинение сплава. Отсутствие в составе сплава дорогостоящих тяжелых РЗМ позволяет использовать его для широкой номенклатуры литых деталей. Повышенная стойкость сплава к окислению в процессе литья и кристаллизации позволяет использовать для изготовления разовых форм смеси, не содержащие совсем (для мелких отливок), или содержащие в минимальных количествах (для средних и крупных отливок) добавки - ингибиторы горения.

Сплав в виде отливок, обладает следующими свойствами, получаемыми на выточенных из прилитых образцов прутках при комнатной температуре: временное сопротивление на разрыв (σв) не менее 275 МПа, относительное удлинение (δ) - не менее 4% (режим термообработки Т6 старение при температуре 250°С 9 часов) и не менее 5% (режим термообработки Т6 старение при температуре 200°С 20 часов), предел текучести (σ0,2) не менее 180 МПа (режим термообработки Т6 старение при температуре 250°С 9 часов) и не менее 200 МПа (режим термообработки Т6 старение при температуре 200°С 20 часов).

Для получения сплава в качестве исходных материалов используют магний промышленной чистоты, Цинк промышленной чистоты, лигатура Mg-15 мас. % Zr, Mg-20 мас. % Nd, Mg-20 мас. % Y. Для промышленного производства сплава может быть использована тройная лигатура (Mg-Zr-Nd) МЦр1Н3. Плавление проводили в плавильной печи сопротивления с использованием стального тигля. Плавление проводилось под защитной газовой смесью Ag+0,5%SF6. После того, как магний был расплавлен, были добавлены остальные легирующие компоненты. Цинк добавлялся в последнюю очередь. После полного расплавления шихты производили рафинирование расплава путем продувки аргоном. Разливку производили при температуре 760-780°С под защитой газовой смеси, которая подавалась в форму и на поверхность металла в тигле.

Литейный сплав на основе магния, содержащий неодим, иттрий, цинк, цирконий, отличающийся тем, что он содержит компоненты при следующем соотношении, мас. %:

Неодим 3-4,5
Иттрий 3-4
Цинк 0,15-0,8
Цирконий 0,4-1,0
Магний и примеси остальное.



 

Похожие патенты:
Изобретение относится к литейному производству и может быть использовано при получении жаропрочных сплавов на основе магния марок МЛ10, МЛ19 и в системах: Mg-Y-Sm-Zn-Zr, Mg-Sn-Zn-Y, Mg-Gd-Y-Zn-Mn, Mg-Y-Zn-Zr, Mg-Gd-Y-Zn-Zr.

Изобретение относится к области металлургии, в частности к получению магниевых лигатур с иттрием, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия.

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно подвергающихся нагревам в процессе эксплуатации.

Изобретение относится к области цветной металлургии, в частности к составам сплавов на основе магния, которые могут быть использованы для изготовления корпусов бытовой техники, шпулек и катушек текстильных станков, подставок для телекамер и других изделий.

Изобретение относится к области металлургии, а именно: к литейным сплавам на основе магния. Предложен сплав на основе магния, содержащий, мас.

Изобретение относится к области машиностроения и авиастроения, в частности к высокопрочному и жаропрочному магниевому сплаву. Сплав на основе магния содержит, мас.%: цинк 0,1-3,0; цирконий 0,05-0,9; кальций 0,005-0,1; кадмий 0,001-0,004; кремний 0,005-0,05; бериллий 0,0005-0,01; иттрий 3,5-9,5; неодим 2,01-2,5; лантан 0,05-1,5; магний - остальное.

Изобретение относится к области металлургии, в частности к магниевым сплавам, содержащим редкоземельные металлы и пригодным для применения в качестве деформируемых или литейных сплавов.
Изобретение относится к области металлургии, в частности к сплавам на основе магния. .

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. .

Изобретение относится к области металлургии, в частности к магниево-гадолиниевым сплавам, и может быть использовано в деталях, к которым выдвигаются требования высокой прочности в сочетании со стойкостью к коррозии и оптимизированным балансом прочности и пластичности.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С. Литейный сплав на основе магния содержит, мас.: неодим 3-4,5, иттрий 3-4, цинк 0,15-0,8, цирконий 0,4-1,0, магний и примеси - остальное. Сплав характеризуется высокими значениями сопротивления на разрыв, относительного удлинения после термообработки по режиму Т6, а также высокой коррозионной стойкостью и температурой эксплуатации до 250°С. 2 ил.

Наверх