Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец 0,15-0,40, сера не более 0,015, фосфор не более 0,020, хром 0,15-0,30, никель не более 0,1, медь не более 0,1, алюминий 0,01-0,05, азот не более 0,006, молибден не более 0,015, ниобий не более 0,01, титан не более 0,01, ванадий не более 0,01, мышьяк не более 0,08, железо и неизбежные примеси - остальное. Прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%. Плотность коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, содержащих кремний при отсутствии сульфидной составляющей или имеющих сульфидную составляющую в виде сульфида марганца, составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2. Повышается коррозионная стойкость проката в водных средах. 2 н.п. ф-лы, 2 табл.

 

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем.

Коренное отличие трубопроводов, транспортирующих водные среды (теплотрассы, системы водоснабжения, нефтепромысловые трубопроводы), от магистральных газо- и нефтепроводов заключается в том, что основной причиной их преждевременных разрушений являются процессы общей и локальной коррозии, которая развивается по классическому электрохимическому механизму (так как водная среда является электролитом). Поэтому и требования к стали должны быть разными. Нельзя считать правильными попытки использовать газопроводные трубы для теплосетей или водоснабжения. Помимо того, что стоимость их существенно выше, они не обеспечат требуемую коррозионную стойкость. Таким образом, требования к химическому составу, микроструктуре, чистоте по неметаллическим включениям для сталей, эксплуатируемых в водных средах (содержащих активаторы коррозии углеродистых сталей сульфаты и хлориды) должны обеспечить стойкость против электрохимической общей и локальной коррозии.

Известна сталь повышенной коррозионной стойкости, содержащая следующие компоненты, мас. %,:

углерод 0,07-0,30
марганец 0,35-1,50
кремний 0,15-0,70
хром 0,05-1,00
никель 0,05-0,50
медь 0,05-0,50
алюминий 0,01-0,05
сера не более 0,010
фосфор не более 0,020
кальций 0,0008-0,0020
железо и неизбежные примеси, в том числе кислород остальное,

причем содержание углерода, марганца и кремния соответствуют условия 2[C]+0,1[Mn]+0,4[Si]<0,63, где [С], [Mn] и [Si] - содержание углерода, марганца и кремния соответственно, мас. %, при этом содержание алюминатов кальция в стали не превышает 3 включений в 1 мм2, содержание кислорода составляет не более 0,3 содержания алюминия, а балл сульфидов составляет не более 1,0. Сталь дополнительно может содержать ниобий в количестве 0,01-0,06% (Патент РФ №2243284, МПК С22С 38/42, опубл. 20.06.2004 г.).

Сталь обеспечивает повышение коррозионной стойкости при сохранении прочности, вязкости и хладостойкости. Однако недостатком известной стали является невысокая стойкость к локальной коррозии ввиду отсутствия требований к содержанию коррозионно-активных неметаллических включений (КАНВ). Кроме того, себестоимость такой стали высокая ввиду повышенного содержания легирующих элементов.

Наиболее близким аналогом к заявленному изобретению является сталь повышенной коррозионной стойкости, содержащая следующие компоненты, мас. %:

углерод 0,02-0,20
марганец 0,35-1,4
кремний 0,01-0,40
хром 0,01-0,40
никель 0,01-0,40
медь 0,10-0,30
алюминий 0,01-0,05
сера не более 0,005
фосфор 0,005-0,035
ниобий 0,02-0,05
кальций 0,0001-0,002
цинк, олово, мышьяк и свинец не более 0,005 каждого
кислород не более 0,004
железо и неизбежные примеси остальное,

причем содержание меди определено в зависимости от содержания серы в соответствии с условием: где |Cu| и |S| - абсолютные величины содержания меди и серы соответственно, при этом максимально допустимое значение плотности коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция составляет 3 вкл./мм2 площади микрошлифа, а максимально допустимое значение плотности КАНВ на основе алюминатов магния составляет 2 вкл./мм2 площади микрошлифа.

Недостатком известной стали является невысокая коррозионная стойкость в водных средах ввиду отсутствия требований к микроструктуре проката, высокого максимально допустимого значения плотности коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, высокого содержания легирующих элементов, таких как углерод, марганец и кремний.

Техническим результатом предлагаемого изобретения является повышение коррозионной стойкости стального проката и изделий из него в водных средах при одновременном снижении себестоимости.

Указанный технический результат достигается тем, что стальной прокат повышенной коррозионной стойкости выполнен из стали, содержащей углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, азот, молибден, ниобий, титан, ванадий, мышьяк, железо и неизбежные примеси, при ограничении максимально допустимого значения плотности коррозионно-активных неметаллических включений в стали, согласно изобретению сталь содержит компоненты в следующем соотношении, мас. %:

углерод 0,04-0,12
кремний не более 0,03
марганец 0,15-0,40
сера не более 0,015
фосфор не более 0,020
хром 0,15-0,30
никель не более 0,1
медь не более 0,1
алюминий 0,01-0,05
азот не более 0,006
молибден не более 0,015
ниобий не более 0,01
титан не более 0,01
ванадий не более 0,01
мышьяк не более 0,08
железо и неизбежные примеси остальное

при этом прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%, а плотность коррозионно-активных неметаллических включений (КАНВ) основе алюминатов кальция и/или магния, содержащие кремний и некоторые другие элементы, при отсутствии сульфидной составляющей или имеющие сульфидную составляющую, преимущественно в виде сульфида марганца составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2.

Технический результат достигается также тем, что изделие изготавливают из стального проката указанного состава.

Сущность технического решения заключается в следующем.

Содержание углерода и марганца в заявленных диапазонах обеспечивает необходимый уровень прочности проката при сохранении его коррозионной стойкости. При более низком содержании указанных элементов не обеспечивается требуемая прочность проката. При более высоком их содержании снижается коррозионная стойкость проката.

Содержание кремния и алюминия в заявленном диапазоне определяет необходимую степень раскисленности стали при ограниченном количестве оксидов, отрицательно влияющих на коррозионную стойкость стали. При более высоком содержании указанных элементов снижается коррозионная стойкость проката.

Присутствие в стали хрома при заявленном содержании углерода и марганца положительно влияет на стойкость стали против общей коррозии и против локальной коррозии в системах водоснабжения. С этим связано ограничение нижнего предела по содержанию этого элемента в стали.

Содержание никеля, меди и молибдена положительно влияет на стойкость стали против общей коррозии в системах водоснабжения, но приводит к повышению себестоимости проката. В связи с этим введено ограничение верхнего предела по содержанию этих элементов.

Ограничение содержания серы связано с необходимостью обеспечения требований по плотности КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей.

Микролегирование стали ниобием, титаном и ванадием обеспечивает необходимый уровень механических свойств. Ограничение верхнего предела содержания элементов позволяет снизить себестоимость проката.

Ограничение содержания фосфора, азота и мышьяка, как вредной примеси, позволяет повысить качество готового проката.

Феррито-перлитная структура проката с содержанием перлита не более 8% положительно влияет на стойкость стали против общей и локальной коррозии, так как имеет низкую плотность дислокаций на поверхности проката, низкий уровень внутренних напряжений и минимальное содержание второй фазы.

Ограничение плотности коррозионно-активных неметаллических включений (КАНВ) основе алюминатов кальция и/или магния, содержащие кремний и некоторые другие элементы, при отсутствии сульфидной составляющей или имеющие сульфидную составляющую, преимущественно в виде сульфида марганца не более 2 вкл./мм2 (КАНВ 1-го типа, сокращенно КАНВ1), плотности КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2 (КАНВ 2-го типа, сокращенно КАНВ2), позволяет повысить стойкость проката против локальной коррозии.

Пример реализации способа. В кислородном конвертере выплавили стали, химический состав которых приведен в таблице 1. Выплавленную сталь разливали на машине непрерывного литья в слябы. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000. Горячекатаные полосы на отводящем рольганге охлаждали водой и сматывали в рулоны. Далее часть горячекатаных рулонов отгружали потребителю для дальнейшей переработки. Другую часть горячекатаных рулонов подвергали соляно-кислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане. Холоднокатаные полосы отжигали в колпаковых печах. Отожженные полосы дрессировали на дрессировочном стане. Холоднокатаные полосы отгружали потребителю для дальнейшей переработки.

Плотность КАНВ1 и КАНВ2 на горячекатаном и холоднокатаном прокате определяли специальными методами (Патент РФ №2149400, МПК G01N 33/20, опубл. 20.05.2000). Коррозионную стойкость проката оценивали по значению плотности тока при потенциале свободной коррозии. Известно, что чем выше плотность тока при потенциале свободной коррозии, тем ниже коррозионная стойкость проката.

Результаты испытаний проката приведены в таблице 2.

Как видно, при выполнении всех параметров формулы изобретения (варианты №№1, 2, 4) стальной прокат обладает высокой коррозионной стойкостью, о чем свидетельствует низкая плотность тока. В случае запредельных значений заявленных параметров (варианты №№3, 5) стальной прокат с повышенной коррозионной стойкостью получить не удалось.

Таким образом, использование настоящего изобретения повышает коррозионную стойкость стального проката и изделий из него в водных средах при одновременном снижении себестоимости.

1. Стальной прокат повышенной коррозионной стойкости, выполненный из стали, содержащей углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, азот, молибден, ниобий, титан, ванадий, мышьяк, железо и неизбежные примеси, отличающийся тем, что сталь содержит компоненты в следующем соотношении, мас.%:

углерод 0,04-0,12
кремний не более 0,03
марганец 0,15-0,40
сера не более 0,015
фосфор не более 0,020
хром 0,15-0,30
никель не более 0,1
медь не более 0,1
алюминий 0,01-0,05
азот не более 0,006
молибден не более 0,015
ниобий не более 0,01
титан не более 0,01
ванадий не более 0,01
мышьяк не более 0,08
железо и неизбежные примеси остальное,

при этом прокат имеет феррито-перлитную структуру с содержанием перлита не более 8%, а плотность коррозионно-активных неметаллических включений (КАНВ) на основе алюминатов кальция и/или магния, содержащих кремний, при отсутствии сульфидной составляющей или имеющих сульфидную составляющую в виде сульфида марганца, составляет не более 2 вкл./мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция и/или магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл./мм2.

2. Изделие, выполненное из стального проката повышенной коррозионной стойкости, отличающееся тем, что оно выполнено из стального проката повышенной коррозионной стойкости по п. 1.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа.
Изобретение относится к области металлургии, а именно к литым хладостойким сталям, используемым для отливок крупногабаритных деталей строительно-дорожных машин и горно-металлургического оборудования, эксплуатируемых при низких температурах и воздействии высоких статических, динамических и циклических нагрузок.

Изобретение относится к звену гусеничной ленты. Звено гусеничной ленты для гусеничной системы содержит основание, к которому прикреплены один или несколько гребней и износостойкая пластина.
Изобретение относится к металлургии, а именно к хладостойким сталям, используемым при производстве толстолистового проката для изготовления сварных изделий, эксплуатируемых при пониженных (до -90°С) температурах в условиях воздействия динамических нагрузок.

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С.

Изобретение относится к области черной металлургии, в частности к составам сплавов на основе железа, которые могут быть использованы в машиностроении. Сплав на основе железа содержит, мас.

Изобретение относится к области металлургии, а именно к двухфазной ферритно-мартенситной нержавеющей стали с содержанием фазы мартенсита 5 - 95 об.%, используемой в качестве листового материала для изготовления корпусов товарных вагонов, эксплуатирующихся в местности с холодным климатом.

Сталь // 2650353
Изобретение относится к стали, которая может быть использована для изготовления деталей машин, работающих в условиях ударных нагрузок. Сталь содержит 0,005-0,01 мас.% углерода, 0,05-0,1 мас.% кремния, 0,1-0,3 мас.% марганца, 20,0-24,0 мас.% хрома, 0,8-1,2 мас.% алюминия, 0,3-0,4 мас.% молибдена, 0,1-0,3 мас.% циркония, 0,1-0,3 мас.% титана, 3,5-4,5 мас.% никеля, железо - остальное.

Сталь // 2639173
Изобретение относится к черной металлургии, в частности к составам сталей. Может использоваться при производстве насосно-компрессорного оборудования.

Изобретение относится к области металлургии, а именно к производству горячекатаных листов из низколегированной стали толщиной от 15 до 165 мм для изготовления, например, запорной арматуры нефтегазопроводов, а также конструкций, работающих при низких температурах до -60°С.

Настоящее изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности TS по меньшей мере 1180 МПа, полное удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, а также к высокопрочному стальном листу с покрытием, полученному предлагаемым способом.

Изобретение относится к области металлургии, а именно к закаленной в штампе стальной детали, используемой для изготовления конструкционных деталей или элементов безопасности транспортных средств.

Изобретение относится к способу изготовления высокопрочного стального листа с покрытием, имеющего улучшенную пластичность и формуемость, при этом стальной лист с покрытием имеет предел текучести YS по меньшей мере 800 МПа, предел прочности при растяжении TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, посредством термической обработки и нанесения покрытия на лист, выполненный из стали, имеющей следующий химический состав, мас.

Изобретение относится к стальному листу с покрытием, изготовленным из стали, имеющей химический состав, включающий в себя, мас. %: 0,34% ≤ C ≤ 0,40%, 1,50% ≤ Mn ≤ 2,30%, 1,50 ≤ Si ≤ 2,40%, 0,35% ≤ Cr ≤ 0,45%, 0,07% ≤ Мо ≤ 0,20%, 0,01% ≤ Al ≤ 0,08% и 0% ≤ Nb ≤ 0,05%, остальное Fe и неизбежные примеси, при этом стальной лист с покрытием имеет структуру, включающую в себя по меньшей мере 60% мартенсита и 12-15% остаточного аустенита, причем стальной лист с покрытием является оцинкованным, а также стальной лист с покрытием имеет предел прочности по меньшей мере 1470 МПа и общее удлинение по меньшей мере 16%.

Изобретение относится к области металлургии, в частности к многофазной стали, используемой для транспортных средств облегченной конструкции. Для обеспечения однородных механических свойств и минимальной прочности на растяжение 980 МПа получают многофазную сталь содержащую, мас.%: C от 0,075 до 0,115, Si от 0,400 до 0,500, Mn от 1,900 до 2,350, Cr от 0,250 до 0,400, Al от 0,005 до 0,060 , N от 0,0020 до 0,0120, S менее или равно 0,0020, Nb от 0,005 до 0,060, Ti от 0,005 до 0,060, B от 0,0005 до 0,0010, Mo от 0,200 до 0,300, Ca от 0,0010 до 0,0060, Cu менее или равно 0,050, Ni менее или равно 0,050, остальное – железо и неизбежные примеси, при этом общее содержание Mn+Si+Cr составляет от 2,500 до 3,250 мас.%.

Настоящее изобретение относится к стальному листу, имеющему предел прочности более 1100 МПа, предел текучести более 700 МПа, однородное удлинение UE по меньшей мере 8,0% и общее удлинение ТЕ по меньшей мере 10,0%, при этом лист выполнен из стали, имеющей химический состав, содержащий в массовых процентах: 0,1% ≤ C ≤ 0,25%, 4,5% ≤ Mn ≤ 10%, 1 ≤ Si ≤ 3%, 0,03 ≤ Al ≤ 2,5%, остальное Fe и неизбежные примеси, при этом химический состав таков, что CMnIndex = Cx(1 + Mn/3,5) ≤ 0,6, при этом стальной лист имеет структуру, содержащую по меньшей мере 20% остаточного аустенита и по меньшей мере 65% мартенсита, а сумма содержания феррита и бейнита составляет менее 10%.

Изобретение относится к области металлургии. Для обеспечения предела прочности на разрыв в незакаленном состоянии не менее 750 МПа холоднокатаную или горячекатаную полосу получают из стали, содержащей, мас.%: C от 0,075 до 0,115, Si от 0,600 до 0,750, Mn от 1,000 до 1,950, Cr от 0,200 до 0,600, Al от 0,010 до 0,060, N от 0,0020 до 0,0120, S ≤ 0,0030, Mo ≥ 0,0200, Nb от 0,005 до 0,040, Ti от 0,005 до 0,030, B от 0,0005 до 0,0030, Ca от 0,0005 до 0,0060, Cu ≤ 0,050, Ni ≤ 0,050, остальное железо и неизбежные примеси, при этом суммарное содержание элементов (Mn+Si+Cr+Mo) находится в следующей зависимости от толщины получаемой полосы: при толщине полосы до 1,00 мм сумма элементов составляет от 2,450 до 2,800 мас.%, при толщине от 1,00 до 2,00 мм сумма элементов составляет от 2,600 до 3,150 мас.%, при толщине свыше 2,00 мм сумма элементов составляет от 3,000 до 3,450 мас.%.

Изобретение относится к изготовлению закаленных деталей из листовой стали с нанесенным покрытием на основе алюминия. Способ включает получение листовой стали с предварительно нанесенным металлическим покрытием, содержащим от 4,0 до 20,0 мас.% цинка, от 1,0 до 3,5 мас.% кремния, необязательно от 1,0 до 4,0 мас.% магния и необязательно дополнительные элементы, выбранные из Pb, Ni, Zr или Hf, и остальное - алюминий и неизбежные примеси, причем соотношение Zn/Si находится в диапазоне от 3,2 до 8,0, получение заготовки, ее термическую обработку при температуре в диапазоне от 840 до 950°С для получения в стали полностью аустенитной микроструктуры, горячую формовку заготовки для получения детали, охлаждение детали с получением в стали микроструктуры, являющейся мартенситной или мартенситно-бейнитной или образованной из по меньшей мере 75% равноосного феррита, от 5 до 20% мартенсита и бейнита в количестве, меньшем или равном 10%, и фосфатирование.

Изобретение относится к высокопрочной стальной полосе с отношением предела текучести к пределу прочности менее 0,85, используемой для изготовления механических конструкций, строительства мостов, архитектурных и инженерно-технических сооружений.

Изобретение относится к области металлургии, в частности к производству термически обработанного листового проката из штрипсовых сталей, предназначенных для изготовления электросварных нефтегазопроводных и нефтепромысловых труб, используемых в условиях пониженных температур для транспортировки агрессивных сред.

Изобретение относится к обработке и отделке полосового проката, в частности ленты, предназначенной для упаковки рулонного металла и листов в пачках. Для обеспечения в упаковочной ленте требуемого уровня физико-механических свойств в широком диапазоне толщин от 0,45 до 1,30 мм в условиях высокопроизводительного агрегата обработке подвергают холоднокатаную ленту с содержанием 0,28-0,50 мас.% углерода, при этом ленту нагревают со скоростью 4,5-8,0°С/с до температуры 930-950°С, выдерживают в расплаве свинца в течение 20-50 с при температуре 460-500°С, окрашивают поверхность и сушат, а затем осуществляют покрытие ленты воском в водно-восковой эмульсии, содержащей 20% парафина, с последующим охлаждением воздухом, имеющим температуру 60-70°С. 1 пр., 1 табл., 2 ил.

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.: углерод 0,04-0,12, кремний не более 0,03, марганец 0,15-0,40, сера не более 0,015, фосфор не более 0,020, хром 0,15-0,30, никель не более 0,1, медь не более 0,1, алюминий 0,01-0,05, азот не более 0,006, молибден не более 0,015, ниобий не более 0,01, титан не более 0,01, ванадий не более 0,01, мышьяк не более 0,08, железо и неизбежные примеси - остальное. Прокат имеет феррито-перлитную структуру с содержанием перлита не более 8. Плотность коррозионно-активных неметаллических включений на основе алюминатов кальция иили магния, содержащих кремний при отсутствии сульфидной составляющей или имеющих сульфидную составляющую в виде сульфида марганца, составляет не более 2 вкл.мм2, а плотность КАНВ на основе оксидной составляющей в виде алюминатов кальция иили магния и сульфидной составляющей, в которой обязательно присутствует сульфид кальция, составляет не более 2 вкл.мм2. Повышается коррозионная стойкость проката в водных средах. 2 н.п. ф-лы, 2 табл.

Наверх