Способ получения порошка на основе карбида титана



Способ получения порошка на основе карбида титана
Способ получения порошка на основе карбида титана
Способ получения порошка на основе карбида титана
Способ получения порошка на основе карбида титана
Способ получения порошка на основе карбида титана
B22F2302/10 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2687423:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение может быть использовано в неорганической химии. Способ получения порошка на основе карбида титана включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом. Порошковую смесь углерода и титана, взятую в атомарном соотношении Ti:C, равном 1:(1-3), помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода, выполненного в виде сплошного стержня, с порошковой смесью, расположенной на дне катода, при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с. Изобретение позволяет получить порошок на основе карбида титана в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере без создания разреженной защитной атмосферы. 4 ил., 1 табл., 3 пр.

 

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом и может быть использовано для получения порошка на основе карбида титана.

Известен способ получения порошка на основе карбида титана [J. Yu et al. / Journal of Alloys and Compounds, 2017, vol. 693. - Р. 500-509], при котором анод и катод размещают в герметичной камере, которую вакуумируют и заполняют газом, состоящим из Ar, H2, CH4 в различных сочетаниях при давлении 0,01-0,03 МПа. Между титановым анодом и графитовым катодом поджигают дуговой разряд постоянного тока. Силу тока поддерживают на уровне 60 А.

Обязательным условием реализации известного метода является создание газовой среды, состоящей из Ar, H2, CH4, вакуумирования камеры, в которой поджигают дуговой разряд.

Известен, принятый за прототип, способ получения порошка на основе карбида титана [Y. Saito et. l. / Journal of Crystal Growth, 1997, vol. 172. - Р. 163-170], заключающийся в генерации дугового разряда постоянного тока между графитовым катодом и полым графитовым анодом, заполненным смесью оксида титана и графита (углерода) в массовом соотношении 1:1. При этом анод и катод располагают внутри герметичной камеры, которую предварительно заполняют газообразным He при давлении 100 Торр или 600 Торр. Величину разрядного промежутка устанавливают в пределах 1-2 мм посредством винта, перемещающего анод соосно с катодом. Ток устанавливают на уровне 70 А.

Для реализации такого способа требуется создание инертной атмосферы из газообразного Не при пониженном относительно атмосферного давлении в объеме герметичной камеры.

Предлагаемый способ позволяет получить порошок на основе карбида титана в открытой воздушной среде.

Способ получения порошка на основе карбида титана, также как в прототипе, включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом.

Согласно изобретению порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана. Дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью при силе тока от 80 А до 200 А. Затем анод отводят вертикально вверх, образуя разрядный промежуток величиной 0,1-0,8 мм и поддерживают дуговой разряд в течение 2-20 с.

При возникновении дугового разряда постоянного тока температура в зоне формирования дугового разряда поднимается до нескольких тысяч градусов, а после отключения источника постоянного тока температура снижается до комнатной, в результате чего возникают условия для синтеза карбида титана. В полости катода при горении дугового разряда генерируется газообразный оксид углерода СО, который предотвращает окисление получаемого порошка на основе карбида титана кислородом атмосферного воздуха.

По сравнению с прототипом для осуществления способа не требуется формирование защитной газовой разряженной атмосферы, так как анод и катод расположены в открытой воздушной среде, а защитная атмосфера (СО) генерируется самопроизвольно в процессе горения дугового разряда в полости графитового катода, выполненного в виде вертикально расположенного стакана.

Время поддержания дугового разряда ограничивается величиной 20 с, так как за это время графитовые анод и катод нагреваются до температур, при которых происходит возгорание и последующее разрушение. При времени поддержания дугового разряда менее 2 доля образовавшегося карбида титана мала. При силе тока более 200 А происходит значительная эрозия анода, вследствие чего разряд гаснет, и ток прерывается. При величине силы тока ниже 80 А не удается поддерживать стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка более 0,8 мм не обеспечивается стабильное горение дугового разряда без прерывания тока. При величине разрядного промежутка менее 0,1 мм дуговой разряд не зажигается, и ток протекает через электроды и образовавшиеся при касании анода и порошковой смеси углерода и титана токопроводящие омические каналы. При соотношении Ti:C больше 1:1 при горении дугового разряда образуется расплавленный металл (титан), который при остывании не позволяет образоваться порошковому продукту. При соотношении Ti:C меньше 1:3 при анализе картины рентгеновской дифракции полученного порошка доля карбида титана мала.

На фиг. 1 представлена схема устройства для получения порошка на основе карбида титана.

На фиг. 2-4 представлены рентгеновские дифрактограммы, полученных порошков на основе карбида титана при различных исходных условиях.

В таблице 1 представлены исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии.

Предложенный способ был реализован с помощью устройства для получения порошка на основе карбида титана, которое содержит графитовый цилиндрический катод 1 (фиг. 1) в виде вертикально расположенного стакана с внешним диаметром 30 мм, высотой 30 мм, к стенке которого прикреплен диэлектрический держатель 2. В резьбовое отверстие диэлектрического держателя 2 вставлен винт 3, соединенный c одним концом графитового цилиндрического анода 4 в виде сплошного стержня с диаметром 8 мм. Свободный конец анода 4 расположен соосно катоду 1 с возможностью продольного перемещения в его полости для соприкосновения с порошковой смесью углерода и титана 5, помещенной на дне катода 1. Анод 4 и катод 1 подключены к источнику постоянного тока 6 (ИПТ).

Порошковую смесь углерода и титана, состоящую из титана (гексагональной структуры) с чистотой 99% и углерода (графитовой структуры) с чистотой 99%, смешали в атомном соотношении Ti:C=1:1 с суммарной массой 5 г. Полученную смесь вместе с тремя пластиковыми шарами с диаметром 7 мм поместили в пластиковую колбу объемом 20 мл для перемешивания в целях равномерного распределения углерода и титана в смеси. Пластиковую колбу вращали в течение 10 минут со сменой направления вращения каждую минуту при частоте 90 об/мин в приводе шаровой мельницы. Из полученной смеси была отвешена при помощи электронных весов навеска массой по 0,5 грамм, которую поместили на дно катода 1. При включении источника постоянного тока 6 (ИПТ) между порошковой смесью углерода и титана 5 на дне графитового катода 1, и графитовым анодом 4 возникла разность потенциалов. Вращением винта 3 перемещали анод 4 внутри полости катода 1 соосно ему до соприкосновения с порошковой смесью углерода и титана 5. Дуговой разряд подожгли кратковременным соприкосновением анода 4 с порошковой смесью углерода и титана 5 при силе тока I=150 А. Затем при помощи винта 3 отвели анод 4 вертикально вверх соосно катоду, образуя разрядный промежуток L=0,5 мм. В процессе горения дугового разряда смесь углерода и титана, а также анод и катод нагреваются. После горения дугового разряда в течение t=10 секунд, источник постоянного тока 6 (ИПТ) отключили. После остывания анода 4 и катода 1 собрали осевший на поверхности полости катода 1 полученный порошок. В результате был получен порошок темно серого цвета. Анализ полученного порошка проводился на рентгеновском дифрактометре Shimadzu XRD 7000s (CuKα-излучение). Сравнение полученной рентгеновской дифрактограммы, а именно, положений дифракционных максимумов с эталонами различных материалов по базе структурных данных показало (фиг. 2) наличие трех кристаллических фаз в материале: графит С, титан Ti (гексагональный) и карбид титана TiC (кубический). Количественный рентгенофазовый анализ проводился при помощи программы Powder Cell 2.2.. В результате установлено, что полученный порошок состоит из 21,6% карбида титана TiC (кубический), 2,7 титана Ti (гексагональный), 75,7% углерода С (графит).

Для других примеров исходные условия для получения порошка на основе карбида титана и результаты его анализа методом рентгеновской дифрактометрии приведены в таблице 1 и на фиг. 3-4.

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НА ОСНОВЕ КАРБИДА ТИТАНА


Способ получения порошка на основе карбида титана, включающий генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом, отличающийся тем, что порошковую смесь углерода и титана в атомарном соотношении Ti:C=1:(1-3) помещают в полость катода, выполненного в виде вертикально расположенного стакана, дуговой разряд поджигают в воздушной среде соприкосновением анода в виде сплошного стержня с порошковой смесью, расположенной на дне катода при силе тока от 80 А до 200 А, затем анод отводят вертикально вверх, образуя разрядный промежуток от 0,1 до 0,8 мм и поддерживая дуговой разряд в течение 2-20 с.



 

Похожие патенты:

Изобретение может быть использовано в неорганической химии. Устройство для получения порошка на основе карбида титана содержит цилиндрические анод и катод, выполненные из графита.

Изобретение может быть использовано в химической промышленности и металлургии. Способ получения порошка диборида титана включает приготовление мокрой реакционной смеси путем гидролиза тетрахлорида титана в дистиллированной воде при постоянном перемешивании, с получением гидратированного диоксида титана и соляной кислоты при регулировке кислотности добавлением гидроксида аммония NH4OH до рН от 7 до 8.
Изобретение может быть использовано в производстве фотокатализаторов и сорбентов для очистки воды и воздуха от токсичных веществ. Для получения титанокремниевого натрийсодержащего продукта осуществляют разложение сфенового концентрата соляной кислотой с концентрацией 30-35% при температуре 95-105°С с образованием раствора хлорида кальция и титанокремниевого остатка.
Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с последующим охлаждением.

Изобретение может быть использовано в химической технологии. Для приготовления порошкообразных образцов η-фазы состава TiO2-х×nH2O, где n=0,9-2,0, с интеркаляцией поли-N-винилкапролактама (ПВК) в структуру η-фазы осуществляют следующие стадии.
Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов.

Изобретение может быть использовано в химической промышленности. Способ получения тетрахлорида титана включает процесс хлорирования, в котором титансодержащее сырье приводят в реакцию с коксом и хлором и получают тетрахлорид титана.

Изобретение может быть использовано в химической промышленности. Способ обработки титансодержащего сырья включает получение тетрахлорида титана с использованием высокотитанового сырья и кокса.

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов.

Изобретение может быть использовано в химической промышленности. Титанат свинца получают из азотнокислого свинца и диоксида титана.

Изобретение относится к области химии, а именно к плазмохимической конверсии газа или газовой смеси с применением импульсного электрического разряда и к устройству для его выполнения.

Предложен способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку.

Изобретение может быть использовано для прогнозирования качества изделий из терморасширенного графита. Измельчают натуральный чешуйчатый графит с получением пачек параллельно уложенных пластин графита.

Изобретение может быть использовано в водородной энергетике. Способ изготовления гидрида магния для химического генератора водорода включает механическую активацию металлического магния путем измельчения с поглощением механической энергии от 5 до 10 кДж/г.

Изобретение может быть использовано в неорганической химии. Устройство для получения порошка на основе карбида титана содержит цилиндрические анод и катод, выполненные из графита.

Изобретение может быть использовано в металлургических, стекловаренных, мусоросжигательных и цементообжигающих печах. Процесс рекуперации тепла состоит из двух циклов – цикла отвода тепла и цикла реформинга, выполняемых поочередно в двух и более регенераторах, заполенных насадками.

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания крупных кристаллов алмазов. Устройство содержит силовую раму 1, установленные в ней соосно в ряд контейнеры 2, 3 цилиндрической формы с размещенным в каждом контейнере соответствующим многопуансонным аппаратом высокого давления 4 в форме куба, в котором выращиваются алмазы, между крайними контейнерами 2, 3 и силовой рамой 1 установлены полуцилиндрические вкладыши 5, цилиндрическая поверхность каждого из которых контактирует с ответной ей полуцилиндрической поверхностью рамы 1.

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагрев полученного твердого остатка.
Изобретение относится к способу получения композитного материала для активного электрода суперконденсатора (СК), содержащего матрицу из термоокисленного полиметилметакрилата и наполнителя из однослойных углеродных нанотрубок.

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с абразивными частицами, а также облицовочных плит.

Изобретение может быть использовано в неорганической химии. Устройство для получения порошка на основе карбида титана содержит цилиндрические анод и катод, выполненные из графита.
Наверх