Способ очистки нефтесодержащих вод и устройство для его осуществления

Группа изобретений относится к очистке нефтесодержащих вод и может найти применение для очистки сточных вод промышленных предприятий, деятельность которых связана с использованием нефтесодержащих жидкостей, нефтебаз, АЗС, нефтедобывающих платформ, а также судовых льяльных вод. Способ очистки нефтесодержащих вод включает последовательную обработку очищаемой воды в поле действия центробежных сил, коалесценцию, отстой под воздействием гравитационных сил, подогрев и фильтрацию, отвод отделенной нефти и удаление твердых дисперсных примесей. Обработку под воздействием центробежных сил осуществляют с помощью низконапорного гидроциклона при угловой скорости, не превышающей 1000 об/мин. Отвод отделенной нефти обеспечивают на трех последовательных ступенях очистки. Очищаемую воду дополнительно обрабатывают с помощью магнитной сепарации. Операцию фильтрации совмещают с сорбцией. В качестве сорбционно-фильтрующего материала используют измельченное модифицированное полипропиленовое волокно. Устройство для очистки нефтесодержащих вод содержит цилиндрический корпус с днищем и крышкой, патрубки подвода очищаемой воды, промывочной воды и продувочного воздуха, патрубки удаления очищенной воды, нефтепродуктов и грязи. Кроме того, устройство содержит узел центробежной обработки, подогреватель, размещенный в верхней части корпуса, гравитационный отстойник-нефтесборник и фильтрующие элементы. Также устройство содержит вертикальную перегородку в виде внутреннего цилиндра, установленного коаксиально корпусу и разделяющего внутреннее пространство устройства на две части. Каждая из частей образует самостоятельную фильтрующую ступень. Гравитационный отстойник-нефтесборник выполнен трехсекционным с отдельным выводом собранной нефти из каждой секции. Узел центробежной обработки представляет собой низконапорный гидроциклон. Фильтрующие элементы содержат сорбционно-фильтрующий материал. Техническим результатом изобретения является повышение качества очистки нефтесодержащих вод путем снижения содержания нефти до норм ПДК за счет исключения эффекта эмульгирования и предотвращения вторичного загрязнения очищенной воды нефтью, скапливающейся в загрузках, а также путем более полного удаления железосодержащих примесей при одновременном улучшении экономических и экологических показателей способа устройства. 2 н. и 1 з.п. ф-лы, 3 пр., 4 ил.

 

Группа изобретений относится к очистке нефтесодержащих вод и может найти применение для очистки сточных вод промышленных предприятий, деятельность которых связана с использованием нефтесодержащих жидкостей, нефтебаз, АЗС, нефтедобывающих платформ, а также судовых льяльных вод.

Известны (RU 2341464, опубл. 2008.12.20) способ и устройство для электрохимической очистки нефтесодержащих сточных вод. Способ включает обработку нефтесодержащей воды в образуемых пузырьками водорода конвективных потоках, число которых равно числу катодных элементов, последующее ее смешение с потоком чистой воды, насыщенной пузырьками кислорода, и фильтрацию полученной смеси в зернистой загрузке с каталитическими свойствами. При этом часть очищенной воды возвращают за счет рециркуляции для насыщения пузырьками кислорода, а газообразный водород и кислород отбирают раздельно. Устройство для осуществления известного способа содержит корпус с вертикальными перегородками и патрубками подвода очищаемой и отвода очищенной воды, приемную камеру, флотационную камеру, разделенную горизонтальной мембраной на катодную и анодную камеру, причем анод выполнен в виде сплошной пластины и расположен на дне анодной камеры, а сетчатый катод выполнен из расположенных параллельно аноду отдельных элементов, каталитическую камеру с катализатором, камеру сбора очищенной воды, камеру сбора шлама и пеносборное устройство в виде последовательно расположенных усеченных пирамид, патрубок подачи очищенной воды в анодную камеру, а также патрубки отвода газообразного водорода и кислорода. Устройство имеет сложную конструкцию, требующую повышенных мер безопасности при его работе, причем в ходе электрохимических процессов выделяются газы, при смешивании которых между собой или водорода с кислородом воздуха могут образовываться горючие и взрывоопасные смеси, что также требует повышенных мер безопасности. Кроме того, работоспособность известного устройства зависит от подаваемой на очистку среды, например, в случае заполнения его нефтью оно становится практически неработоспособным вследствие отсутствия условий для протекания электрохимических процессов.

Известен (RU 2338574, опубл. 2008.11.20) способ разделения воды, нефтепродуктов и механических примесей, включающий обработку очищаемой среды в поле центробежных сил на высокой скорости (несколько тысяч оборотов/мин), отстаивание нефтепродуктов в поле гравитационных сил, фильтрацию в тонкослойном пластинчатом фильтре, отделение грязи от воды за счет придания ускорения обрабатываемому потоку с последующим резким снижением скорости очищаемой воды и изменением направления ее движения. Устройство для осуществления известного способа содержит цилиндрический корпус с конусообразным грязесборником в нижней части, гравитационный отстойник-нефтесборник, вертикальный центробежный узел со спиралеобразным колесом стабилизации и центробежными камерами, представляющими собой разновидность однопродуктовых гидроциклонов, сборную камеру очищенной воды, патрубки с автоматическими клапанами для удаления очищенной воды, отсепарированного нефтепродукта и грязи. Известное устройство не обеспечивает достаточно высокого качества очистки, основная причина этого заключается в том, что в мощном поле центробежных сил крупные капли нефтепродукта имеют тенденцию распадаться с образованием большого количества мелких, вплоть до эмульгирования, и при отсутствии фильтрующей ступени неминуемо попадают в очищенную воду, ухудшая результат очистки

Известно (RU 2022933, опубл. 1994.11.15) устройство для очистки нефтесодержащих сточных вод, включающее трубопровод подачи исходной воды, узел гидроциклонирования, выполненный в виде мультициклона, приемник нижнего слива которого выполнен в виде камеры, соединенной посредством трубопровода с отстойной емкостью и с камерой неполностью очищенной воды, приемник верхнего слива выполнен в виде соединенной с камерой флотации трубы, коаксиально установленной с трубопроводом подачи воды, а также отстойную камеру с узлами отвода продуктов разделения, при этом камера флотации своей нижней частью сообщается с отстойной камерой, а верхней - с камерой неполностью очищенной воды. Трубопровод подачи исходной жидкости выполнен с вертикальным участком и снабжен газосборником. Качество очистки такого устройства является недостаточно высоким из-за наличия мультициклона, который может служить дополнительным эмульгатором нефти, причем образовавшаяся эмульсия гравитацией разделяется слабо, а фильтрующей ступени в устройстве не предусмотрено.

В качестве наиболее близкого к заявляемому техническому решению выбраны описанные в патенте RU 2206513, опубл. 2003.06.20, способ для очистки воды от жидких нефтепродуктов и устройство для его осуществления.

Известный способ включает двухступенчатую обработку очищаемой воды под воздействием центробежной силы в горизонтальном и вертикальном гидроциклонах с последующим снижением угловой и вертикальной составляющих скорости и стабилизацией потока в горизонтальной плоскости до медленно вращающегося в гравитационном отстойнике-нефтесборнике ламинарного потока, отстой в поле гравитационных сил, подогрев, фильтрацию в кассете с гранулированным наполнителем в направлении сверху вниз в слабом электрическом поле, повторный гравитационный отстой под действием электростатического поля, в котором вектор напряженности поля направлен встречно вектору скорости потока воды, и окончательную фильтрацию в гранулированном наполнителе мелкой фракции с олеофильными свойствами.

Устройство для осуществления известного способа содержит корпус с днищем и крышкой, патрубки подвода очищаемой воды, подачи промывочной воды и продувочного воздуха, патрубки удаления очищенной воды, нефтепродуктов и грязи, подогреватель, размещенный в верхней части корпуса, узел центробежной обработки, в состав которого входят два гидроциклона, один расположенный горизонтально, а второй-вертикальный, установленный в трубе для гашения скорости потока, нижняя часть которой выполнена в виде колпака-грязесборника крупнодисперсной фракции, а на верхней ее части установлено неподвижное центробежное колесо со спиральными направляющими для стабилизации потока, а также гравитационный отстойник-нефтесборник, кассету с крупным гранулированным наполнителем в виде термически закаленных шариков, размещенную во внутреннем объеме корпуса и ограниченную сетками, к которым подведен электрический потенциал малого напряжения; нижний гравитационный отстойник с рекуператором в виде спирального электрода или сетки, к которым подведен электрический потенциал малого напряжения полярности, противоположной полярности сеток кассеты, перфорированный диск с гранулированным наполнителем мелкой фракции с олеофильными свойствами.

Недостатком известного способа и устройства для его реализации является недостаточно высокая степень очистки, связанная с конструктивно обусловленной высокой угловой скоростью потока очищаемой воды на начальной стадии очистки в узле центробежной обработки, который в таком режиме (10000 об/мин первый гидроциклон и 30000 об/мин второй) действует как эмульгатор, изначально ухудшающий условия работы последующих ступеней очистки за счет образования дополнительного к исходному загрязнению количества эмульсии, которая является устойчивой и трудно поддается разложению. Кроме того, известный способ предусматривает отвод отделившейся нефти только на одной ступени очистки: в гравитационном отстойнике-нефтесборнике, находящемся в верхней части устройства, а последующие ступени очистки накапливают нефть в объеме загрузки, что может привести к продавливанию нефти через загрузку и попаданию в очищенную воду, вероятность чего повышается при смене режима - изменении очищаемой среды. Другой недостаток известного изобретения связан с используемым фильтрующим материалом, который не обладает сорбционными свойствами, к тому же не подлежит регенерации и не находит применения в качестве отработавшего материала, что отрицательно сказывается на его экономических и экологических показателях.

Задачей предлагаемой группы изобретений является создание способа очистки нефтесодержащих вод и устройства для его осуществления, эффективно действующих при всех возможных состояниях подаваемой на очистку водной среды и обеспечивающих при любой степени ее загрязнения, согласно требованиям современных нормативных документов, очистку до содержаний нефти, не превышающих ПДК, с использованием сорбционно-фильтрующих материалов, пригодных для многократной регенерации и, в конечном счете, для утилизации с положительным экономическим эффектом.

Технический результат предлагаемой группы изобретений заключается в повышении качества очистки нефтесодержащих вод путем снижения содержания нефти в очищенной воде до норм ПДК за счет исключения эффекта эмульгирования под воздействием центробежных сил на начальном этапе обработки и предотвращения вторичного загрязнения очищенной воды нефтью, скапливающейся в загрузках, а также путем более полного удаления железосодержащих примесей с помощью магнитной сепарации при одновременном улучшении экономических показателей и экологичности.

Указанный технический результат достигают способом очистки нефтесодержащих вод, включающим последовательную обработку очищаемой воды в поле действия центробежных сил, коалесценцию, отстой под воздействием гравитационных сил, подогрев и фильтрацию, отвод отделенной нефти и удаление твердых дисперсных примесей, в котором, в отличие от известного, обработку под воздействием центробежных сил осуществляют с помощью низконапорного гидроциклона при скорости вращения не превышающей 1000 об/мин, отвод отделившейся нефти обеспечивают на трех последовательных ступенях очистки, очищаемую воду дополнительно обрабатывают с помощью магнитной сепарации, операцию фильтрации совмещают с сорбцией, при этом в качестве сорбционно-фильтрующего материала используют измельченное модифицированное полипропиленовое волокно.

Максимально высокой степени очистки достигают предлагаемым способом при использовании полипропиленового волокна, модифицированного путем предварительного напряжения в среде водяного пара при температуре 105-130°С и обработки н-гексаном С6Н14 при нагревании.

Заявленный технический достигают также устройством для реализации предлагаемого способа, которое содержит цилиндрический корпус с днищем и крышкой, патрубки подвода очищаемой воды, подачи промывочной воды и продувочного воздуха, патрубки удаления очищенной воды, нефтепродуктов и грязи, узел центробежной обработки, подогреватель, размещенный в верхней части корпуса, гравитационный отстойник-нефтесборник и фильтрующие элементы, в котором, в отличие от известного, внутреннее пространство вертикальной перегородкой в виде внутреннего цилиндра, установленного коаксиально корпусу, разделено на две части, каждая из которых образует самостоятельную фильтрующую ступень, гравитационный отстойник-нефтесборник выполнен трехсекционным с отдельным выводом собранной нефти из каждой секции, узел центробежной обработки представляет собой низконапорный гидроциклон, а фильтрующие элементы содержат сорбционно-фильтрующий материал.

Предлагаемое устройство, общий вид которого представлен на фиг. 1, содержит цилиндрический корпус 1 с тангенциально установленной трубой 2 ввода очищаемой нефтеводяной смеси и трубой 3 с запорным клапаном 4 для ввода промывочной жидкости.

Днище 5 устройства выполнено коническим и снабжено трубой 6 отвода очищенной воды и трубой 7 с трехходовым пробковым краном 8 для сброса шлама вместе с промывочной жидкостью, а также патрубком с запорным клапаном, по которому поступает воздух для барботажа.

В верхней части устройства расположен разделитель 9 в виде усеченного конуса (в двух проекциях показанный на фиг. 2), содержащий плиту 10, две перегородки 11 и 12, наружный конус 13 с фланцем. Сверху на разделителе 9 установлен трехсекционный нефтесборник 14 (фиг. 4).

Объем, ограниченный цилиндрической частью корпуса 1 и конической частью разделителя 9 (объем I), представляет собой низконапорный гидроциклон.

В основании корпуса 1 расположена плита 15, установленная на ребрах 16, жестко связанных (например, с помощью сварки) с коническим днищем 5 и образующая вместе с ним накопитель шлама (объем II). Сверху к плите 16 примыкает также жестко связанный с ней (приваренный), концентрично установленный по оси корпуса 1 вертикальный внутренний цилиндр 17, который играет роль перегородки, разделяющей внутренний объем на две части, при этом каждая из них снабжена сорбционно-фильтрующими элементами и образует самостоятельную фильтрующую секцию (объем III и объем IV на фиг. 1). К боковой поверхности корпуса 1 с его наружной стороны крепятся магнитные пробки 18, с помощью которых собираются оксиды железа в виде ржавчины и железной окалины, недостаточно полно извлекаемые со шламом.

Сверху к цилиндрической перегородке 17 на вильчатых шпильках 19 крепится верхняя крышка 20 фильтрующих секций III и IV, сверху которой размещен разделитель 9.

Конструкция одного сорбционно-фильтрующего элемента из установленных в фильтрующих секциях III и IV показана на фиг. 3. Он содержит наружную 21 и внутреннюю 22 перфорированные обечайки, торцевые заглушки 23 и снабжен внутри сеткой 24 из нержавеющей стали, предотвращающей высыпание сорбционно-фильтрующего материала 25, представляющего собой измельченные полипропиленовые волокна в виде отрезков длиной 12-24 мм, толщиной 35-40 мкм, модифицированные путем напряжения предварительно скрученных волокон в среде водяного пара при температуре 105-130°С и обработки с помощью н-гексана С6Н14 при нагревании.

Трехсекционный нефтесборник 14, показанный на фиг. 4, выполнен в виде цилиндрического корпуса 26 с крышкой 27 и фланцем 28. внутренний объем которого разделен радиальными перегородками 29 на три секции (объемы V, VI и VII), которые снабжены водо-водяными нагревателями 30 для обезвоживания отделенной нефти, при этом нагреватели смежных секций последовательно соединены трубками 31. Все секции нефтесборника 14 в верхней части снабжены приспособлениями для сброса отсепарированных нефтепродуктов, выполненными в виде трубок 32 с запорными клапанами, или могут быть оборудованы автоматическими клапанами сброса нефтепродуктов.

С помощью предлагаемого устройства способ осуществляется следующим образом.

Насосом объемного типа нефтесодержащую воду подают на очистку по установленной тангенциально вводной трубе 2 в объем I, являющийся низконапорным гидроциклоном. Под действием гравитации и центробежных сил капельный нефтепродукт отделяется от воды, в силу меньшей плотности поднимается вверх и накапливается в первой секции нефтесборника 14 (объем V). Находящийся в очищаемой воде шлам под действием центробежных сил, смещается от центра к периферии, скапливается у стенки внешнего цилиндра (корпуса 1) и под действием сил гравитации оседает в накопителе шлама (объем II), при этом магнитными пробками 18, размещенными на корпусе 1 устройства, из воды извлекаются оксиды железа в виде ржавчины и железной окалины, недостаточно полно извлекаемые со шламом.

Очищаемая вода, отделенная от капельного нефтепродукта и шлама с оксидами железа, проходит через первую фильтрующую ступень (объем III), где происходит коалесценция остаточного нефтепродукта на волокнах сорбционно-фильтрующей загрузки 25. Нефтепродукт в виде крупных капель всплывает с восходящим потоком воды и накапливается во второй секции (объем VI) нефтесборника 14.

Через вторую фильтрующую ступень (объем IV) очищенная от капельного нефтепродукта вода проходит со скоростью фильтрации, подобранной таким образом, что эмульгированный нефтепродукт абсорбируется на волокнах сорбционно-фильтрующей загрузки. На случай продавливания капель нефтепродукта вследствие полного заполнения объема волокнистой загрузки второй фильтрующей ступени для предотвращения его попадания его в очищенную воду служит третья секция нефтесборника 14 (объем VII).

Для уменьшения содержания воды в слое отделенных от воды нефтепродуктов в трехсекционном нефтесборнике 14 осуществляется подогрев всех трех секций последовательно размещенными водо-водяными подогревателями 30.

Отделенный нефтепродукт периодически сбрасывается из секций нефтесборника 14 через трубки 32 с запорными клапанами или автоматическими клапанами сброса нефтепродуктов.

Очищенная вода выводится из устройства по трубе 6 отвода очищенной воды, а скопившийся в накопителе (объем II) шлам периодически сбрасывается по трубе 7 отвода шлама с клапаном 8.

Промывку устройства и регенерацию фильтрующих элементов осуществляют одновременно методом барботажа воздухом в среде дизельного топлива. Количество промываний не лимитируется, а общий срок службы фильтрующих элементов с загрузкой в значительной мере зависит от степени загрязненности водной среды. Присутствие трудно растворимых асфальтенов сокращает число возможных циклов регенерации этих элементов до 10-15, при этом в более благоприятных случаях это число может быть увеличено в несколько раз.

Для промывки и регенерации устройство заполняют дизельным топливом через трубу ввода промывочной жидкости при закрытых клапанах на трубе ввода нефтесодержащей воды, трубах сброса отсепарированных нефтепродуктов и трубе отвода очищенной воды и открытом пробковом кране на трубе сброса шлама. После заполнения дизельным топливом и удаления остаточной воды через трубу подачи воздуха подают воздух низкого давления и путем последовательного открывания клапанов на нефтесборнике производят поочередный барботаж ступеней очистки.

После слива дизельного топлива устройство два-три раза промывают чистой водой в том же порядке, после чего он готово к работе.

Использование отработавшего в качестве загрузки полипропиленового волокна в строительстве, преимущественно в дорожном строительстве, в виде армирующей добавки в бетон для предотвращения образования микротрещин позволяет в широком масштабе утилизировать эти «отходы производства», причем с положительным экономическим эффектом. Примеры конкретного осуществления способа:

В предварительно заполненное чистой водой устройство, насосом объемного типа, подавали морскую воду, содержащую нефтепродукты. Пробы из трубопровода очищенной воды отбирали после выхода устройства на установившийся режим. Установившимся считали режим работы, при котором через устройство предварительно пропускался объем нефтесодержащей воды равный его внутреннему объему.

Проводили очистку морской воды, загрязненной наиболее распространенными и часто являющимися причиной экологических катастроф нефтепродуктами: мазутом М-100, дизельным топливом, нефтью.

Определение нефтесодержания в пробах проводили методом ИК-спектрофотометрии на концентратомере КН-3 (ПЭП «Сибэкоприбор», Россия) по методике, описанной в ПНД Ф 14.1:2:4.272-2012 (ФР.1.31.2008.04409) «Методика выполнения измерений массовой концентрации нефтепродуктов в сточных водах методом ИК-спектрофотометрии с применением концентратомеров серии КН». Экстракцию нефтепродуктов выполняли четыреххлористым углеродом в лабораторном экстракторе ЭЛ-1 (ПЭП «Сибэкоприбор», Россия) в течение 15 мин при скорости вращения мешалки 3000 об/мин.

Массовую концентрацию нефтепродукта в пробе анализируемой воды рассчитывали по формуле (1):

где СНП - массовая концентрация нефтепродукта в пробе анализируемой воды, мг/л;

Сизм - массовая концентрация нефтепродукта в элюате, измеренная на приборе, мг/л;

СCCl4 - объем четыреххлористого углерода, использованного для проведения экстракции, мл;

K - коэффициент разбавления;

V - объем пробы анализируемой воды, мл.

За результат измерений массовой концентрации нефтепродуктов принимали среднее арифметическое значение (СНП) двух результатов параллельных измерений (СНП1 и CНП2).

Степень очистки воды в предлагаемом устройстве оценивали по формуле (2):

где S - степень очистки, %.

Пример 1

Предлагаемым способом с помощью предлагаемого устройства проводили очистку морской воды, содержащей мазут М-100 в количестве 1447,98 мг/л. В результате очистки содержание мазута в морской воде снизилось до 7,74 мг/л степень очистки составила 99,47%.

Пример 2

Проводили очистку морской воды, содержащей дизельное топливо в количестве 1920,66 г/л. В итоге очистки содержание дизельного топлива в анализируемой воде снизилось до 6,33 мг/л; степень очистки морской воды составила 99,67%.

Пример 3

Проводили очистку морской воды, содержащей нефть в количестве 120,0 г/л. В итоге очистки содержание нефти в воде составило 0,18 мг/л, степень очистки - 99,85%.

Полученные значения остаточной концентрации нефтепродуктов в воде удовлетворяют требованиям Российского морского регистра судоходства, изложенным в документе НД №2-020101-113 «Правила по предотвращению загрязнения с судов, эксплуатируемых в морских районах и внутренних водных путях РФ», утвержденном 02.02.2018, и позволяют осуществлять ее сброс непосредственно в природные водоемы. Эти данные в целом свидетельствуют о работоспособности устройства и эффективности способа.

1. Способ очистки нефтесодержащих вод, включающий последовательную обработку очищаемой воды в поле действия центробежных сил, коалесценцию, отстой под воздействием гравитационных сил, подогрев и фильтрацию, отвод отделенной нефти и удаление твердых дисперсных примесей, отличающийся тем, что обработку под воздействием центробежных сил осуществляют с помощью низконапорного гидроциклона при угловой скорости, не превышающей 1000 об/мин, отвод отделенной нефти обеспечивают на трех последовательных ступенях очистки, очищаемую воду дополнительно обрабатывают с помощью магнитной сепарации, операцию фильтрации совмещают с сорбцией, при этом в качестве сорбционно-фильтрующего материала используют измельченное модифицированное полипропиленовое волокно.

2. Способ по п. 1, отличающийся тем, что в качестве сорбционно-фильтрующего материала используют полипропиленовое волокно, модифицированное путем предварительного напряжения в среде водяного пара при температуре 105-130°С и обработки н-гексаном С6Н14 при нагревании.

3. Устройство для очистки нефтесодержащих вод, содержащее цилиндрический корпус с днищем и крышкой, патрубки подвода очищаемой воды, промывочной воды и продувочного воздуха, патрубки удаления очищенной воды, нефтепродуктов и грязи, узел центробежной обработки, подогреватель, размещенный в верхней части корпуса, гравитационный отстойник-нефтесборник и фильтрующие элементы, отличающееся наличием вертикальной перегородки в виде внутреннего цилиндра, установленного коаксиально корпусу и разделяющего внутреннее пространство устройства на две части, каждая из которых образует самостоятельную фильтрующую ступень, а также тем, что гравитационный отстойник-нефтесборник выполнен трехсекционным с отдельным выводом собранной нефти из каждой секции, узел центробежной обработки представляет собой низконапорный гидроциклон, а фильтрующие элементы содержат сорбционно-фильтрующий материал.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности при обезвреживании пульпы гипохлорита кальция, образующейся в процессе очистки хлорсодержащих газов от хлора известковым молоком.

Изобретение может быть использовано в сельском хозяйстве, животноводстве, медицине и пищевой промышленности. Устройство для электроактивации воды содержит корпус, образованный вертикально установленными цилиндрическим 2 и трубчатым 1 электродами, скрепленными герметично и коаксиально втулками 3, 4, выполненными из диэлектрического материала, сетку 8, размещенную между одним из электродов 2 и засыпкой 7 из токопроводящих гранул, наибольший размер которых не превышает половины толщины засыпки 7, диафрагму 11, два диэлектрических кольца 9, 10, дополнительную электродную камеру 13, линии для подвода 17 и отвода 21 воды, подключенные к концам трубчатого электрода 1, снабженного радиальными отверстиями 24, 19 в верхней и нижней части и источник тока.

Изобретение относится к способам электрокоагуляционной очистки воды и может быть использовано при водоподготовке в муниципальных, индивидуальных и промышленных условиях.

Группа изобретений относится к активации воды с повышением ее физико-химической активности без изменения химического состава и может быть использована в домашних условиях, пунктах общественного питания, для полива.

Изобретение относится к очистке подотвальных вод ионитами и может быть использовано в горнодобывающей промышленности. Способ очистки подотвальных вод и технологических растворов от меди включает удаление содержащихся ионов железа(III) и ионообменную очистку.

Группа изобретений относится к способу и устройству ускорения испарения воды с использованием солнечной энергии. Устройство для ускорения испарения воды выполнено из полимерного материала с плотностью 0,8-0,95 г/см3 и содержит плоское основание 1, на верхней и нижней поверхности которого размещены ребра 3.

Изобретение относится к области очистки фосфорсодержащих сточных вод и может быть использовано для очистки городских стоков, стоков предприятий пищевой промышленности, а также животноводческих и птицеводческих комплексов.

Группа изобретений относится к активации воды с повышением ее физико-химической активности без изменения химического состава и может быть использована в домашних условиях.

Изобретение может быть использовано в технологии очистки сточных вод от ионов металлов. Способ включает обработку реагентом, перемешивание и отделение осадка.

Изобретение относится к способу удаления перфторированной алкановой кислоты. Способ включает стадии, на которых вводят в контакт первый раствор с анионообменной смолой с получением второго раствора и получаемой в результате анионообменной смолы, содержащей перфторированную алкановую кислоту, адсорбированную на ней.
Группа изобретений может быть использована при обработке сточных вод в качестве флокулянтов и коагулянтов. Композиции высокосульфатированных, высокоосновных полиалюминия хлорсульфатов (PACS) имеют основность от 55 до 75% и формулу: Al(OH)xCl(3-x-2y)(SO4)y, где 1,78≤х≤2,02, 0,03≤у≤0,45 и 1,8≤х+у/2≤2,1; отношение Al:SO4 составляет от 2 до 34; отношение Al:Cl составляет от 0,9 до 3,0; отношение Al:OH составляет от 0,5 до 0,6 и средняя молекулярная масса PACS больше или равна 95 и меньше или равна 111. Кроме того, соли, присутствующие в композиции PACS, включают от 0 до 1,0% хлорида натрия по массе и от 0 до 1,0% сульфата натрия по массе. Композиции получают путем смешивания твердого гидроксихлорида алюминия, содержащего 1,5 или менее молей гидратационной воды, с водным раствором сульфата алюминия и выдерживания полученной суспензии в течение периода времени, достаточного для превращения суспензии в прозрачный или немного мутный раствор. Упаковку в виде контейнера, содержащую смесь двух компонентов - гидроксихлорида алюминия и сульфата алюминия, используют при обработке сточных вод. Указанная смесь содержит от 0,75 до 20 частей гидроксихлорида алюминия на 1 часть сульфата алюминия в расчете на сухую массу, и указанный гидроксихлорид алюминия содержит менее 3 молей гидратационной воды. Изобретения обеспечивают высокую эффективность и стабильность полученных композиций в качестве устойчивых к нагреванию коагулянтов при работе с холодными или очень мутными водами в широком диапазоне рН. 8 н. и 11 з.п. ф-лы, 2 пр.

Изобретение относится к использованию композиций надмуравьиной кислоты для удаления нарастающей биопленки и минеральных отложений на мембранах. Способ удаления микроорганизмов и минеральных отложений с мембранной системы включает: приведение мембраны в контакт с композицией надмуравьиной кислоты, содержащей надмуравьиную кислоту, муравьиную кислоту и перекись водорода, причем композиция является совместимой с мембраной и не повреждает мембрану по результатам измерений снижения потока мембраны; и удаление нарастающих бактерий и растворение минеральных отложений на мембране 2 н. и 39 з.п. ф-лы, 5 ил., 12 табл.

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19. Паровой котел-утилизатор 6 содержит экономайзер 10, испаритель и пароперегреватель. Выхлоп противодавленческой паровой турбины 4 соединен с входом подогревателя 8 морской воды, имеющего трубопровод рециркуляции 13 подогреваемой морской воды с насосом. Выход подогревателя 8 морской воды с экономайзером 10 котла-утилизатора 6. Выход пароперегревателя котла-утилизатора 6 соединен с противодавленческой паровой турбиной 4, регулируемый отбор пара высокого давления которой соединен с внешним подогревателем 20. Регулируемый отбор пара низкого давления соединен с верхней частью корпуса первой ступени адиабатного многоступенчатого испарителя. В верхней зоне последней ступени адиабатного многоступенчатого испарителя размещены подогреватель 22 предварительного подогрева холодной морской воды и конденсатор 26 вторичного пара. Трубопровод 30 отвода дистиллята внешним потребителям связан через химводоочистку 33 и трубопровод подпиточной воды 16 с входом деаэратора 7. Трубопровод 9 холодной морской воды установлен с возможностью разделения воды на два потока. Роторы газовой турбины газотурбинной установки 1 и противодавленческой паровой турбины 4 связаны валами с их электрогенераторами 2, 5. В ступенях многоступенчатого испарителя размещены нагревательные элементы - двухходовые кожухотрубные конденсаторы вторичного пара 24, жалюзийные сепараторы вторичного пара, приемники рассола, перепускные трубы дроссельно-распылительного устройства 28, сборные камеры дистиллята вторичного пара 25. Приемник рассола 31 последней ступени адиабатного многоступенчатого испарителя сообщен с трубопроводом отвода рассола 32. Изобретение позволяет повысить тепловую экономичность и надежность комбинированной установки, увеличить расход пара через паровую турбину, повысить электрическую мощность и выработку электроэнергии. 1 ил.

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31. Изобретение позволяет повысить тепловую экономичность установки и обеспечить экономичное опреснение морской воды и выработку электроэнергии для энергоснабжения установки и внешних потребителей. 1 ил.

Изобретение относится к способам очистки сточных вод, содержащих простые и комплексные цианиды, роданиды, а также мышьяк и цветные металлы и может быть использовано для обезвреживания жидкой фазы хвостов цианидного выщелачивания благородных металлов из руд, концентратов и техногенных отходов. Техническим результатом изобретения является одностадийная комплексная очистка цианосодержащих сточных вод от цианида натрия и роданид-ионов до содержаний, удовлетворяющих требованиям к оборотной и очищенной воде, а также снижение содержаний мышьяка, меди и никеля. Задачей изобретения является очистка цианосодержащих сточных вод золотоизвлекательных фабрик от цианид- и роданид-ионов с достижением их концентраций, удовлетворяющих требованиям к оборотной воде и воде, сбрасываемой на хвостохранилище золотоизвлекательных фабрик, а также снижение содержания концентрации мышьяка, меди и никеля за счет возможности контроля и регулирования значения рН в течение всего процесса обезвреживания. Поставленная задача достигается тем, что, в способе обезвреживания стоков золотодобывающей фабрики, включающем обработку озоном, согласно изобретения, обезвреживание проводят озоном, подаваемым в виде озоно-кислородной смеси, с концентрацией озона не менее 103 г/м3, а постоянный контроль и регулирование значения рН, равного не менее 11 ед., проводят добавлением известкового молока с концентрацией оксида кальция 10%. на протяжении всего процесса обезвреживания. Реализация способа обезвреживания стоков золотодобывающей фабрики озоном подаваемым в виде озоно-кислородной смеси при постоянном контроле и регулирование значения рН равном не менее 11 ед., на протяжении всего процесса обезвреживания, помимо удаления цианид- и роданид-ионов, позволяет очистить растворы от мышьяка, меди и никеля.

Изобретения могут быть использованы при дезинфекции поверхности воды водоемов. Способ контроля цветения фотосинтезирующих микроорганизмов, обитающих на поверхности водной системы, включает распределение по поверхности воды плавучей диффундирующей композиции, содержащей по меньшей мере один флотирующий агент и по меньшей мере один ингибитор фотосинтезирующего микроорганизма в условиях, которые индуцируют по меньшей мере 50% снижение численности фотосинтезирующего микроорганизма в течение определенного периода времени. При этом концентрация ингибитора фотосинтезирующего микроорганизма в водной системе через указанный период времени составляет величину ниже допустимой концентрации в питьевой воде. Флотирующий агент выбран из группы, состоящей из насыщенных углеводородов, смолистых материалов, воска, природного или синтетического латекса и их комбинаций. Изобретения обеспечивают снижение количества микроорганизмов, загрязняющих водную среду водоемов, при низкой дозировке ингибитора в плавучей диффундирующей композиции, медленно выделяющей ингибитор в окружающую среду. 2 н. и 29 з.п. ф-лы, 7 ил., 4 табл., 7 пр.

Изобретение относится к электрохимической ячейке для электрокоагуляции, содержащей катод и расходуемый анод, включающий расходуемую часть и нерасходуемую электропроводящую часть. Ячейка характеризуется тем, что расходуемая часть имеет пористость между 20 и 60% по объему и состоит из прессованного порошка, содержащего железный порошок с по меньшей мере 90% по массе железа. Также изобретения относится к способу удаления загрязнений из воды. Использование предлагаемого изобретения позволяет улучшить манипулирование расходуемым анодом при сохранении достаточно высокой скорости коагуляции. 2 н. и 23 з.п. ф-лы, 10 ил., 10 табл., 6 пр.

Изобретение относится к области химической промышленности и охраны окружающей среды и может быть использовано для очистки сточных вод, содержащих высокодисперсные углеродные материалы. Способ электрофлотационного извлечения высокодисперсных углеродных материалов из сточных вод заключается в том, что электрофлотация проводится при рН 7, плотности тока 0,2 А/л в присутствии поверхностно-активного вещества алкилдиметил (2-гидроксиэтил) аммоний хлорид и хлорида натрия при массовом соотношении их к друг другу [1:1:5]. Данное изобретение позволяет увеличить степень извлечения высокодисперсных углеродных материалов с 70,0-73,0% до 89,0-90,0 при сохранении времени электрофлотации 20 минут. Таким образом, эффективность от применения предлагаемого способа обусловлена повышением степени извлечения высокодисперсных углеродных материалов из сточных вод на 16,0-20,0%. 2 табл.

Изобретение относится к области обработки воды. Способ обработки воды посредством фильтрации на слое гранулированного материала содержит этапы, на которых предназначенную для обработки воду перекачивают в реакторе восходящим потоком со скоростью, не допускающей псевдоожижения указанного слоя, но позволяющей указанному гранулированному материалу перемещаться по мере фильтрации в направлении нижней части указанного реактора; в основании реактора при помощи трубопровода, в который нагнетают газ, непрерывно отбирают загрязненный гранулированный материал, содержащий адсорбированные на нем загрязнители и задержанные частицы; отбираемый загрязненный гранулированный материал непрерывно или периодически подвергают физической очистке; очищенный гранулированный материал направляют обратно в указанный слой. Способ дополнительно включает этап, осуществляемый непрерывно или периодически, на котором во время фильтрации удаляют часть загрязненного гранулированного материала, отбираемого в основании реактора, извлекая указанную часть из трубопровода, который установлен снаружи корпуса реактора; и осуществляемый непрерывно или периодически этап, на котором во время фильтрации в реактор загружают свежий гранулированный материал в количестве, достаточном, чтобы компенсировать часть удаленного гранулированного материала. Гранулированным материалом является адсорбционный материал. Изобретение позволяет удалять из воды органические вещества и микрозагрязнители с применением гранулированного адсорбционного материала, который можно заменять не прибегая к прерыванию обработки, поддерживать уровень обработки воды по существу постоянным во времени, снизить расходы на обработку, исключить использование коагулянтов или флокулянтов, исключить образование шлама. 8 з.п. ф-лы, 4 ил.

Группа изобретений относится к водоочистке. Система обработки воды содержит первый участок, включающий первый путь потока и второй путь потока; второй участок, соединенный с указанным первым участком с возможностью удаления. Второй участок включает электронный компонент и камеру, имеющую впуск, находящийся в жидкостном сообщении с указанным первым путем потока, и выпуск, находящийся в жидкостном сообщении с указанным вторым путем потока. Внутри указанной камеры содержится блок обработки. Электронный компонент содержит блок питания, выполненный с возможностью подачи питания на ультрафиолетовую лампу. Вариант системы обработки воды, разъемно соединенной с основанием, имеющим первый путь потока для подачи неочищенной воды в систему обработки и второй путь потока для приема очищенной воды, включает камеру, имеющую впуск, находящийся в жидкостном сообщении с первым путем потока, и выпуск, находящийся в жидкостном сообщении со вторым путем потока. Впуск камеры разъемно соединен с первым путем потока. Выпуск камеры разъемно соединен со вторым путем потока. Электронный компонент встроен в систему обработки воды и выполнен с возможностью отделения от основания и получения питания от основания. Изобретения позволяют обеспечить расширение арсенала технических средств для очистки воды. 2 н. и 33 з.п. ф-лы, 59 ил.
Наверх