Способ автоматического управления подачей ингибитора для предупреждения гидратообразования в системах сбора установок комплексной/предварительной подготовки газа, расположенных в районах крайнего севера

Изобретение относится к области добычи природного газа, в частности к предупреждению гидратообразования в системах сбора установок комплексной/предварительной подготовки газа (УКПГ/УППГ). Способ включает подключение отдельного газосборного шлейфа ГСШ к каждому кусту газодобывающих скважин, подачу контролируемого объема регенерированного ингибитора по отдельному трубопроводу в начало каждого ГСШ, оснащение каждого ГСШ датчиками контроля расхода добываемого газа, его температуры и давления, установку на каждый шлейф клапана-регулятора добычи, подсоединение концов всех газосборных шлейфов к газосборному коллектору, из которого добываемый газ поступает в сепаратор для очистки от механических примесей и водного раствора ингибитора, отвод водного раствора ингибитора, на регенерацию. При осуществлении способа используется система телеметрии, сопряженная с автоматизированной системой управления технологическими процессами АСУ ТП УКПГ/УППГ. С ее помощью производят с заданной дискретностью последовательный опрос установленных в начале и в конце всех ГСШ датчиков давления, температуры и расхода газа. АСУ ТП УКПГ/УППГ одновременно с системой телеметрии, опрашивает датчик фактической концентрации регенерированного ингибитора на выходе буферной емкости регенерированного ингибитора, и датчик концентрации водного раствора ингибитора на трубопроводе его подачи в цех регенерации. Опросив датчики, АСУ ТП записывает эту информацию и всю полученную информацию из системы телеметрии в свою базу данных. После этого АСУ ТП УКПГ/УППГ производит их обработку для выработки управляющих решений по подаче ингибитора индивидуально для каждого шлейфа. В случае выявления в одном из ГСШ момента начала процесса гидратообразования, АСУ ТП выдает соответствующее сообщение оператору. Далее, в режиме реального времени, используя занесенные в базу данных результаты измерений и стандартизованные математические модели реализуемых технологических процессов, АСУ ТП расчетным путем определяет фактическое значение необходимого расхода регенерированного ингибитора, которое нужно подавать в ГСШ, где выявлено начало процесса гидратообразования. Это значение АСУ ТП выдает как задание (уставку) соответствующему, реализованному на базе АСУ ТП ПИД-регулятору, управляющему клапаном-регулятором расхода ингибитора в шлейфе, где выявлен процесс гидратообразования. Одновременно, АСУ ТП на основе нормативно-справочной информации, имеющейся в ее базе данных, определяет режим работы ПИД-регулятора путем изменения коэффициента пропорциональности, подаваемого на его соответствующий вход, для управления динамикой подачи ингибитора. При этом содержание нормативно-справочной информации в базе данных АСУ ТП УКПГ/УППГ регулярно обновляется в интерактивном режиме по результатам гидродинамических и периодических промыслово-лабораторных исследований скважин. Минимизируется расход ингибитора, повышается эффективность добычи и подготовки скважинной продукции. 2 ил.

 

Изобретение относится к области добычи природного газа, в частности, к предупреждению гидратообразования и разрушения гидратов в системах сбора (ССГ) установок комплексной/предварительной подготовки газа (УКПГ/УППГ), расположенных в районах Крайнего Севера.

Известно устройство для автоматического управления процессом подачи ингибитора гидратообразования в газопроводы природного газа [см. Авт. св. SU №526864]. Оно включает регулятор соотношения расходов газа и ингибитора, связанный с исполнительным механизмом подачи ингибитора по трубопроводу, снабженному байпасной линией, и регулятор расхода газа. Устройство снабжено двухпозиционным регулятором, входом которого служит выход регулятора расхода газа, и запорным органом, соединенным с установленным на байпасной линии двухпозиционным регулятором.

Недостатком данного устройства является громоздкость из-за наличия двух клапанов-регуляторов и байпасной линии, которая является источником потерь энергии, затрачиваемой на сообщение неиспользуемого напора перепускаемому количеству ингибитора в системе.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является комплексная автоматизированная система распределения и дозирования ингибитора гидратообразования [см. Патент RU №2376451], которая содержит:

- насосный агрегат с электроприводом, напорный коллектор, трубопроводы отбора ингибитора из коллектора;

- независимые контуры стабилизации давления, один из которых образуется датчиком давления в напорном коллекторе, выход которого соединен с автоматическим регулятором частотного преобразователя, а выход последнего соединен с электроприводом насосного агрегата, второй контур стабилизации давления образует блок регуляторов давления прямого действия, включенный в группу отборных устройств между напорным коллектором и исполнительными устройствами;

- регулятор давления «после себя», образующий совместно с исполнительными устройствами одну управляемую группу устройств, обеспечивающих подачу ингибитора в защищаемые точки технологического оборудования по заданному алгоритму и программе;

- группу исполнительных устройств, обеспечивающих прямую управляемую программную подачу ингибитора на кусты скважин от общего коллектора;

- находящиеся на каждом трубопроводе подачи ингибитора на куст регулируемые устройства, обеспечивающие распределение потока ингибитора между скважинами куста в соответствии с индивидуальной настройкой для каждой скважины и автоматически поддерживающие заданное соотношение перепадов давлений.

Существенными недостатками данной системы являются отсутствие возможности оперативного определения концентрации ингибитора, подаваемого в ССГ и в отработанном растворе, который поступает из ССГ на УКПГ/УППГ, что может привести к существенному перерасходу или недостаточной подаче ингибитора в систему.

Перечисленные факторы, в конечном итоге делают нецелесообразным применение данной автоматизированной системы для управления подачей ингибитора для предупреждения гидратообразования в ССГ в условиях Крайнего Севера.

Задачей, на решение которой направлено настоящее изобретение является минимизация расхода ингибитора для предупреждения гидратообразования в ССГ.

Техническими результатами, достигаемыми путем реализации изобретения, являются:

• автоматическое определение в реальном масштабе времени количества ингибитора, необходимого для предупреждения гидратообразования в ССГ с учетом его концентрации в регенерированным (исходном) и отработанном водном растворе;

• автоматическое предупреждение гидратообразования в ССГ путем поддержания концентрации ингибитора в отработанном водном растворе, обеспечивающей заданное снижение температуры гидратообразования в каждом конкретном шлейфе;

• автоматическое распределение ингибитора между газосборными шлейфами (ГСШ) в ССГ.

Указанная задача решается, а технический результат достигается за счет того, что способ автоматического управления подачи ингибитора для предупреждения гидратообразования в системах сбора установок комплексной/предварительной подготовки газа УКПГ/УППГ, расположенных в районах Крайнего Севера, включает:

- подключение отдельного газосборного шлейфа ГСШ к каждому кусту газодобывающих скважин;

- подачу контролируемого объема регенерированного ингибитора по отдельному трубопроводу в начало каждого газосборного шлейфа ГСШ;

- оснащение каждого ГСШ датчиками контроля расхода добываемого газа, его температуры и давления, которые установлены в начале и в конце шлейфа;

- установку на каждый шлейф клапана-регулятора добычи газа с куста газодобывающих скважин;

- подсоединение концов всех газосборных шлейфов к газосборному коллектору, из которого добываемый газ поступает в сепаратор для очистки от механических примесей и водного раствора ингибитора;

- отвод водного раствора ингибитора, по мере накопления в нижней части сепаратора, на регенерацию в цех регенерации ингибитора УКПГ/УППГ.

Реализация способа предусматривает использование системы телеметрии, сопряженной с автоматизированной системы управления технологическими процессами АСУ ТП УКПГ/УППГ. С ее помощью производят с заданной дискретностью последовательный опрос установленных в начале и в конце всех ГСШ датчиков давления, температуры и расхода газа. Так же, АСУ ТП УКПГ/УППГ одновременно с системой телеметрии, опрашивает датчик фактической концентрации регенерированного ингибитора, установленного на выходе буферной емкости регенерированного ингибитора, и датчик концентрации водного раствора ингибитора, установленного на трубопроводе его подачи в цех регенерации ингибитора УКПГ/УППГ. Опросив датчики и получив информацию из системы телеметрии АСУ ТП записывает эту информацию в свою базу данных. После этого АСУ ТП УКПГ/УППГ производит ее обработку для выработки управляющих решений по подаче ингибитора индивидуально для каждого шлейфа.

В случае выявления в одном из ГСШ момента начала процесса гидратообразования, АСУ ТП перестраивается на режим парирования возникшей ситуации. При этом она выдает соответствующее сообщение оператору. Далее, в режиме реального времени, используя занесенные в базу данных результаты измерений и стандартизованные математические модели реализуемых технологических процессов, АСУ ТП расчетным путем определяет фактическое значение необходимого расхода регенерированного ингибитора, которое нужно подавать в ГСШ, где выявлено начало процесса гидратообразования. Это значение АСУ ТП выдает как задание (уставку) соответствующему, реализованному на базе АСУ ТП ПИД-регулятору, управляющему клапаном-регулятором расхода ингибитора в шлейфе, где выявлен процесс гидратообразования. Одновременно, АСУ ТП на основе нормативно-справочной информации, имеющейся в ее базе данных, определяет режим работы ПИД-регулятора путем изменения коэффициента пропорциональности, подаваемого на его соответствующий вход, для управления динамикой подачи ингибитора в указанный ГСШ. При этом содержание нормативно-справочной информации в базе данных АСУ ТП УКПГ/УППГ регулярно обновляется обслуживающим персоналом в интерактивном режиме по результатам гидродинамических и периодических промыслово-лабораторных исследований скважин.

На фиг. 1 приведена принципиальная технологическая схема подачи ингибитора в ССГ УКПГ/УППГ, а на фиг. 2 - структурная схема автоматического управления подачи ингибитора в ССГ УКПГ/УППГ.

На фиг. 1 использованы следующие обозначения:

1i - газовые скважины i-го куста, подключенные к i-му шлейфу (для простоты на фиг. 1 показана всего одна скважина), где 1≤i≤n - номер шлейфа ССГ, а n общее количество шлейфов;

2i - датчик давления, установленный в начале i-го шлейфа ССГ;

3i - датчик температуры, установленный в начале i-го шлейфа ССГ;

4i - датчик расхода газа, установленный в начале i-го шлейфа ССГ;

5i - i-ый газосборный шлейф (ГСШ);

6i - трубопровод подачи ингибитора в начало i-го шлейфа ССГ;

7i - клапан-регулятор расхода ингибитора в i-м шлейфе ССГ;

8i - датчик расхода регенерированного ингибитора, подаваемого в i-й шлейф ССГ;

9 - напорный коллектор регенерированного ингибитора;

10i - клапан-регулятор расхода газа в i-м шлейфе ССГ;

11i - датчики давления, установленные в конце i-го шлейфа ССГ;

12i - датчики температуры, установленные в конце i-го шлейфа ССГ;

13 - газосборный коллектор;

14 - насосный агрегат подачи регенерированного ингибитора в ССГ;

15 - датчик концентрации регенерированного (исходного) ингибитора;

16 - буферная емкость регенерированного (исходного) ингибитора;

17 - сепаратор газа;

18 - датчик концентрации водного раствора ингибитора;

19 - автоматизированная система управления технологическими процессами (АСУ ТП) УКПГ/УППГ.

На фиг. 2 использованы следующие обозначения:

20i - сигнал, поступающий с датчика расхода регенерированного ингибитора 8,- на вход PV ПИД-регулятора i-го ГСШ;

21i - сигнал значения коэффициента пропорциональности Кп_ном. i, поступающий из базы данных на вход I1 коммутатора 24i;

22i - сигнал значения коэффициента пропорциональности Кп_макс. i, поступающий из базы данных на вход I2 коммутатора 24i;

23i - сигнал рассчитанного массового расхода ингибитора Fингиб.расч.Δi для i-го ГСШ, поступающий на вход SP ПИД-регулятора i-го ГСШ;

24i - блок коммутации коэффициентов пропорциональности для i-го ГСШ;

25i - ПИД-регулятор поддержания расхода ингибитора в i-ом ГСШ;

26i - управляющий сигнал, подающийся с выхода CV ПИД-регулятора на клапан-регулятор 7i расхода ингибитора в i-ом ГСШ;

27i - сигнал команды на выбор коэффициента пропорциональности для ПИД-регулятора i-го ГСШ.

Способ автоматического управления подачи ингибитора для предупреждения гидратообразования в ССГ УКПГ/УППГ, расположенных в районах Крайнего Севера, реализуют следующим образом.

Газ, поступая из скважин i-го куста 1i, проходит по i-му ГСШ 5i, оснащенному датчиками давления 2i, температуры 3i и расхода 4i, установленными в начале i-го ГСШ, и датчиками давления 11i и температуры 12i, установленными в конце i-го ГСШ.

Далее газ через клапан-регулятор расхода 10i, который используется для регулирования добычи газа из скважин i-го куста, подается в газосборный коллектор 13 и далее на вход сепаратора 17. В сепараторе 17 происходит очищение газа от механических примесей, капельной влаги и отделение водного раствора ингибитора. Этот раствор по мере накопления в нижней части сепаратора 17 отводится на регенерацию в цех регенерации ингибитора через трубопровод, оснащенный датчиком концентрации водного раствора ингибитора 18. С выхода сепаратора 17 очищенный газ от механических примесей и капельной жидкости поступает в цех подготовки газа для дальнейшей осушки.

Для подачи ингибитора в начало i-го ГСШ 5i, проложен отдельный трубопровод подачи ингибитора 6i, который оснащены датчиками расхода ингибитора 8i и клапаном-регулятором 7i. Необходимое давление в напорном коллекторе 9 регенерированного ингибитора создается насосным агрегатом 14 подачи ингибитора.

Вход насосного агрегата 14 соединен входным патрубком с буферной емкостью 16, на котором установлен датчик концентрации 15 регенерированного ингибитора.

Система автоматического управления подачи ингибитора работает следующим образом.

Используя систему телеметрии, производят с заданной дискретностью последовательный опрос установленных на всех ГСШ датчиков. А именно, датчиков давления (датчики 2i), температур (датчики 3i) и расхода газа (датчики 4i) вначале каждого ГСШ, а так же датчика давления (датчики 11i) и температур (датчик 12i) в конце каждого ГСШ. Результаты произведенных измерений записывают в базу данных АСУ ТП УКПГ/УППГ. В каждом цикле опроса АСУ ТП одновременно с системой телеметрии измеряет фактическую концентрацию регенерированного ингибитора (датчик - 15) и водного раствора ингибитора (датчик - 18).

Если АСУ ТП УКПГ/УППГ обнаружит то, что начался процесс гидратообразования в ССГ (например, по способу - патент на изобретение РФ №2329371), она приступает к расчету количества ингибитора, которое необходимо подавать в тот ГСШ 5i, в котором начался процесс гидратообразования. Далее АСУ ТП выдает задание своим регуляторам и исполнительным органам (клапанам-регуляторам) на предупреждение процесса гидратообразования.

В качестве ингибитора, для предупреждения гидратообразования в ГСШ газовых промыслов, расположенных в районах Крайнего Севера, используют метанол. Поэтому каждый раз, как только выявляется начало процесса гидратообразования в i-ом ГСШ, необходимо определить требуемое количество ингибитора - метанола и подать его в начало ГСШ для предупреждения гидратообразования в ССГ. С этой целью АСУ ТП 19 УКПГ/УППГ для каждого i-го ГСШ 5i в режиме реального времени производит расчеты следующих величин:

а) значение концентрации ингибитора в водном растворе i-го шлейфа, обеспечивающей заданное снижение температуры гидратообразования (определяется по преобразованной формуле Гаммершмидта) [см., например, ст. 6, Инструкция по расчету нормативов потребления метанола для использования в расчетах предельно допустимых или временно согласованных сбросов метанола для объектов ОАО «Газпром», ВРД 39-1.13-010-2000]:

где i - номер ГСШ (i=1, 2, …, n);

32 - молекулярная масса метанола;

1295 - константа Гаммершмидта;

Δti - требуемое снижение температуры гидратообразования в конце i-го ГСШ.

В свою очередь, Δti определяется из выражения:

Δti=tгидр.i-tк.гсш.i,

где tк.гсш.i - температура газа в конце i-го ГСШ, значение которой поступает с датчика температуры 12i;

tгидр.i - температура гидратообразования в конце i-го ГСШ, которая зависит от давления в нем, т.е. tгидр.i=ƒ(Pi).

Для сеноманского газа, который добывается на месторождениях Крайнего Севера, tгидр.i определяется из выражения [см., например, стр. 22, Инструкция по расчету нормативов потребления метанола для использования в расчетах предельно допустимых или временно согласованных сбросов метанола для объектов ОАО «Газпром», ВРД 39-1.13-010-2000]:

где Pi - значение давления газа в конце i-го ГСШ, которое поступает с датчика давления 11i.

б) Удельный расход ингибитора, вводимого в поток газа i-го шлейфа для предупреждения гидратообразования, определяется по формуле [см., например, стр. 23, Инструкция по расчету нормативов потребления метанола для использования в расчетах предельно допустимых или временно согласованных сбросов метанола для объектов ОАО «Газпром», ВРД 39-1.13-010-2000]:

где C1 - концентрация регенерированного ингибитора, закачиваемого в i-й ГСШ (обычно 90…95% мас.), фактическое значение которой поступает с датчика концентрации 15;

qri - равновесное содержание ингибитора, содержащееся в поступающем газе;

Wi - количество содержащейся в газе жидкой воды.

Количество содержащейся в газе жидкой воды - Wi определяется по формуле:

Wi=Wi пласт.вода+ΔWi,

где Wi пласт.вода - количество выносимой газом пластовой воды из скважин;

ΔWi - количество конденсирующейся влаги из газа в ГСШ, определяемое из выражения [см., например, стр. 9, Инструкция по расчету нормативов потребления метанола для использования в расчетах предельно допустимых или временно согласованных сбросов метанола для объектов ОАО «Газпром», ВРД 39-1.13-010-2000]:

где W1i и W2i - влагосодержание газа в начале и в конце i-го ГСШ, которое можно определить из формулы Бюкачека [см., например, ст. 88, Э.Б. Бухгалтер. Метанол и его использование в газовой промышленности. М., Недра, 1986, 238 с.]:

где Pi - значение давления газа, поступающее с датчика давления 2i для определения W1i, и с датчика давления 11i для определения W2i;

ti - значение температуры газа, поступающее с датчика температуры 3i для определения W1i и с датчика температуры 12i для определения w2i.

Равновесное содержание метанола в газе, контактирующем с водометанольным раствором, определяется из выражения:

где M0i - растворимость метанола в газе в системе «метанол-природный газ», значение которой определяется путем обработки графика, приведенного на рис. 2 (стр. 8) Инструкции по расчету нормативов потребления метанола для использования в расчетах предельно допустимых или временно согласованных сбросов метанола для объектов ОАО «Газпром», ВРД 39-1.13-010-2000.

в) Массовый расход ингибитора в i-ом ГСШ - Fингиб_расч_i, определяется из выражения:

где Fгаз_i - значение расхода газа в i-ом ГСШ, которое поступает с датчика расхода 4i.

г) Итоговую расчетную концентрацию ингибитора С2_итог_расч на выходе сепаратора 17 вычисляют из выражения:

где C2i - значение концентрации ингибитора в водном растворе i-ого ГСШ, обеспечивающее заданное снижение температуры гидратообразования в i-ом ГСШ;

Fинг_i - фактический массовый расход ингибитора по i-ому ГСШ.

Как правило, какая та часть ингибитора, подаваемого в ГСШ, растворяется в газе, поэтому итоговая фактическая концентрация ингибитора С2_итог_факт, измеряемого с помощью датчик концентрации насыщенного ингибитора 18, всегда будет меньше своего расчетного значения, т.е.:

C2_итог_факт<C2_итог_расч.

Для управления подачей ингибитора для предупреждения гидратообразования в шлейфах необходимо знать значения С2_итог_факт для каждого ГСШ. Так как сепаратор газа 17 является общим для всех ГСШ и учитывая то, что значение С2_итог_факт для каждого шлейфа непосредственно не измеряется, значение концентрации ингибитора в водном растворе i-ого ГСШ - С2_итог_факт_i определяется косвенным путем следующим образом:

а) Используя формулу (4) определяют долевую концентрацию ингибитора в водном растворе каждого ГСШ, обеспечивающую заданное снижение температуры гидратообразования в i-ом шлейфе:

где

б) Если полученное из формулы (4) значение С2_итог_расч принять за 100%, то процентную долю каждого шлейфа в нем можно найти из следующей формулы:

в) Далее АСУ ТП находит разницу между С2_итог_расч и С2_итог_факт, т.е. значения поправки Δ:

Δ=C2_итог_расч-C2_итог_факт.

г) Значение поправки Δ принимают за 100%. Распределение значения поправки между шлейфами назначают, используя результаты вычислений по пункту б). В результате для i-го шлейфа поправку определяют, используя следующую формулу:

С учетом поправки удельный расход ингибитора, вводимого в поток газа i-го шлейфа, определяют по следующей формуле:

Поправку к массовому расходу ингибитора в i-ом ГСШ, с учетом значения для i-го шлейфа, определяют из выражения:

Для поддержания необходимого значения массового расхода ингибитора в i-ом ГСШ, определяемого по формуле (5), используется ПИД-регулятор 25i поддержания расхода ингибитора для в i-ый ГСШ, который реализован на базе АСУ ТП УКПГ/УППГ. На вход задания SP ПИД-регулятора 25i подается сигнал 23i вычисленного значения Fингиб_расч_Δi расхода ингибитора по формуле (5). На вход обратной связи PV этого же ПИД-регулятора подают с датчика 8i сигнал 20i значения расхода регенерированного ингибитора, подаваемого в ГСШ. Для изменения динамики подачи ингибитора в ГСШ используют коммутатор сигналов 24i, производящий переключение между коэффициентами пропорциональности Кп_ном.i и Кп_макс.i, сигналы которых 21i и 22i поступают из базы данных АСУ ТП УКПГ/УППГ. Эти сигналы подаются на соответствующие входы I1 и I2 коммутатора сигналов. Переключение между коэффициентами пропорциональности Кп_ном.i и Кп_макс.i, производится по команде 27i, выдаваемой АСУ ТП и поступающей на вход CS коммутатора сигналов 24i.

Благодаря этому на выходе CV ПИД-регулятора 25i формируется управляющий сигнал 26i, который подается на клапан-регулятор 7i расхода ингибитора. В результате в ГСШ 5i будет всегда подаваться необходимое количество ингибитора, достаточное для предотвращения образования гидратов.

Настройку коэффициентов ПИД-регулятора 25i проводят согласно общеизвестным методам, изложенным, например, в «Энциклопедии АСУ ТП», п. 5.5, ПИД-регулятор, ресурс:

http://www.bookasutp.ru/Chapter5_5.aspx#HandTuning.

При этом, для каждого ГСШ 5i определяют два значения коэффициента пропорциональности:

- Кп_ном.i - значение, при котором поддержание расхода происходит без перерегулирования;

- Кп_макс.i - значение, при котором поддержание расхода ингибитора происходит с допустимым перерегулированием, обеспечивая наибольшее быстродействие.

Значения коэффициентов пропорциональности Кп_ном.i, Кп_макс.i и количества выносимой пластовой воды из скважин - Wi пласт.вода заносится в раздел нормативно-справочной информации базы данных АСУ ТП УКПГ/УППГ. Обслуживающий персонал промысла регулярно уточняет значение Wi пласт.вода по результатам гидродинамических и периодических промыслово-лабораторных исследований и имеет возможность в интерактивном режиме корректировать их значения в базе данных АСУ ТП УКПГ/УППГ согласно результатам измерения.

Допустим, количество выносимой пластовой воды - Wi пласт.вода, поступающей в ГСШ 5i из скважин равно нулю. В этом случае, при управлении процессом предупреждения гидратообразования в шлейфе из базы данных АСУ ТП выбирается значение коэффициента пропорциональности Кп_ном.i для ПИД-регулятора этого шлейфа, подавая соответствующую команду коммутатору 24i на его вход CS. В результате поддержание рассчитанного значения расхода ингибитора будет происходить без перерегулирования, тем самым не допуская его необоснованного перерасхода.

Если по результатам гидродинамических и периодических промыслово-лабораторных исследований выявлено наличие выносимой пластовой воды Wi пласт.вода из скважины, подключенной к ГСШ 5i, то его значение вводят в базу данных АСУ ТП. А это означает, что вероятность образования гидратов в данном ГСШ 5i повышена. Следовательно, при управлении процессом предупреждения гидратообразования для этого шлейфа из базы данных АСУ ТП УКПГ/УППГ выбирается значение коэффициента пропорциональности Кп_макс.i и соответствующий сигнал 27i будет подан коммутатору 24i на его вход CS. В результате поддержание значения расхода ингибитора будет происходить с допустимым перерегулированием, что повысит скорость реакции на изменение значения задания по расходу ингибитора, и он будет подаваться в ГСШ 5i быстрее, что понижает вероятность образования гидратов в данном ГСШ.

На практике возможен случай, когда С2_итог_факт>(C2_итог_расч+Δн), где Δн - зона нечувствительности, тогда АСУ ТП об этом сразу сообщает обслуживающему персоналу УКПГ/УППГ для уточнения значения количества выносимой пластовой воды из скважин, которое стало причиной появления данного неравенства.

Способ автоматического управления подачи ингибитора для предупреждения гидратообразования в системах сбора газа УКПГ/УППГ, расположенных в районах Крайнего Севера, реализован в ПАО «Газпром» ООО «Газпром добыча Ямбург» на Заполярном газоконденсатном месторождении на УКПГ 1С, УКПГ 2С и УКПГ 3С. Результаты эксплуатации показали его высокую эффективность. Заявляемое изобретение может широко использоваться и на других действующих и вновь осваиваемых газоконденсатных месторождениях РФ.

Применение данного способа позволяет:

- в реальном масштабе времени автоматически определять количество ингибитора, необходимого для предупреждения гидратообразования в ССГ и в автоматическом режиме распределять подачу ингибитора между ГСШ;

- автоматически предупреждать гидратообразование в ССГ путем поддержания заданной концентрации ингибитора в отработанном водном растворе, обеспечивая необходимое снижение температуры гидратообразования в ГСШ;

- оптимизировать подачу ингибитора для предупреждения гидратообразования в ССГ, обеспечивая повышение эффективности добычи и подготовки скважинной продукции.

Способ автоматического управления подачей ингибитора для предупреждения гидратообразования в системах сбора установок комплексной/предварительной подготовки газа УКПГ/УППГ, расположенных в районах Крайнего Севера, включающий подачу контролируемого объема регенерированного ингибитора по отдельному трубопроводу в начало каждого газосборного шлейфа ГСШ, который оснащен датчиками контроля расхода добываемого газа, его температуры и давления в начале и в конце шлейфа, а также клапаном-регулятором добычи газа с куста скважин, подсоединение концов всех газосборных шлейфов к газосборному коллектору, из которого добываемый газ поступает в сепаратор для очистки от механических примесей и водного раствора ингибитора, который, по мере накопления в его нижней части отводится на регенерацию в цех регенерации ингибитора, отличающийся тем, что используя систему телеметрии, сопряженную с автоматизированной системой управления технологическими процессами АСУ ТП УКПГ/УППГ, производят с заданной дискретностью последовательный опрос установленных в начале и в конце всех ГСШ датчиков давления, температуры и расхода газа, а также с помощью АСУ ТП УКПГ/УППГ одновременно опрашивают датчик фактической концентрации регенерированного ингибитора, установленного на выходе буферной емкости регенерированного ингибитора и датчик концентрации водного раствора ингибитора, установленного на трубопроводе его подачи в цех регенерации ингибитора УКПГ/УППГ и записывает эту информацию и всю полученную информацию из системы телеметрии в свою базу данных, далее АСУ ТП УКПГ/УППГ производит ее обработку для управления подачей ингибитора индивидуально по каждому шлейфу и при выявлении момента начала процесса гидратообразования в ГСШ, АСУ ТП в режиме реального времени, используя занесенные в базу данных результаты измерений и стандартизованные математические модели реализуемых технологических процессов, расчетным путем определяет фактическое значение необходимого расхода регенерированного ингибитора, которое нужно подавать в соответствующий ГСШ, где выявлено начало процесса гидратообразования, и выдает это значение как задание - уставку соответствующему, реализованному на базе АСУ ТП пропорционально-интегрально-дифференциирующему регулятору ПИД-регулятору, управляющему соответствующим клапаном-регулятором расхода ингибитора в шлейфе, к тому же АСУ ТП на основе нормативно-справочной информации, имеющейся в ее базе данных, определяет режим работы ПИД-регулятора путем изменения коэффициента пропорциональности, подаваемого на его соответствующий вход, для управления динамикой подачи ингибитора в указанный ГСШ, при этом содержание нормативно-справочной информации АСУ ТП УКПГ/УППГ регулярно обновляется обслуживающим персоналом в интерактивном режиме по результатам гидродинамических и периодических промыслово-лабораторных исследований скважин.



 

Похожие патенты:
Изобретение относится к области узлов и деталей машин, а именно - к области регуляторов потока, обеспечивающих прохождение газового, жидкостного или газожидкостного потоков, и может быть использовано в нефтегазодобывающей, а также в нефтехимической отраслях промышленности.

Изобретение относится к устройству для управления насосом. Устройство содержит процессор сигналов или процессорный модуль, который может быть выполнен с возможностью по меньшей мере получения сигналов, содержащих информацию о калиброванных данных скорости вращения и мощности двигателя для гидравлической насосной системы; и определения расхода и давления в насосной системе, которые связаны с эквивалентной характеристической переменной гидравлической системы, основываясь, по меньшей мере частично, на полученных сигналах.

Изобретение относится к автоматическому регулированию количества одоранта, поступающего в газовый поток, и может быть использовано в различных отраслях промышленности, например, в процессе одорирования природного газа.

Настоящее изобретение относится к способу регулирования работы реакционного контура фракционирующей колонны и установки гидрокрекинга. Способ включает следующие стадии: обеспечение фракционирующей колонны для приема выходящего потока из реактора гидрокрекинга в качестве подаваемого сырья для фракционирующей колонны, при этом указанная фракционирующая колонна ограничивает зону дистилляции, которая включает в себя нижнюю зону, верхнюю зону и промежуточную зону между указанной нижней зоной и указанной верхней зоной, причем указанная промежуточная зона имеет тарелку отбора боковой фракции; введение указанного подаваемого сырья для фракционирующей колонны в указанную нижнюю зону указанной фракционирующей колонны; накопление на указанной тарелке отбора боковой фракции жидких углеводородов, имеющих желаемый температурный интервал кипения; отведение потока боковой фракции указанных углеводородов с указанной тарелки отбора боковой фракции; разделение указанного потока боковой фракции на первый поток и поток продукта; введение указанного первого потока в указанную зону дистилляции; регулирование расхода указанного первого потока в зависимости от разности между измеренным расходом указанного первого потока и желаемым расходом указанного первого потока; регулирование расхода указанного потока продукта в зависимости от разности между измеренным уровнем жидкости на указанной тарелке отбора боковой фракции и желаемым уровнем жидкости на указанной тарелке отбора боковой фракции; передачу указанного потока продукта вниз по потоку от указанной фракционирующей колонны и рециркулирование кубового потока из фракционирующей колонны в качестве сырья в реактор гидрокрекинга.
Изобретение относится к управлению расхода в потоке текущей среды. Устройство автоматического отключения воды содержит запирающий кран, установленный на стояке подвода воды в помещение, датчик присутствия в доме людей и реле, электрически связанное с датчиком и запирающим краном.
Изобретение относится к управлению расхода в потоке текущей среды. Устройство аварийного отключения воды содержит запирающий кран и датчик протока, установленные на стояке подвода воды в помещение, датчик присутствия в доме людей и контроллер, электрически связанный с датчиками и запирающим краном.

Представленная система относится к проточной системе. Способ ввода в эксплуатацию проточной системы, содержащей регулируемые регуляторы потока, выполненные с возможностью регулировки в соответствии с сигналом настройки, полученным от контроллера, обменивающегося данными с регуляторами потока, причем способ содержит создание расчетного плана с расчетными параметрами, включающими в себя представление местоположения регуляторов потока в проточной системе, теоретические параметры регуляторов потока и теоретическую расчетную предварительную настройку/настройки регуляторов потока, связывающие теоретическую предварительную настройку/настройки с ожидаемым расходом/расходами текучей среды в проточной системе, и установку физической проточной системы в соответствии с расчетным планом.

Устройство управления расходом текучей среды содержит регулятор для работы при высоких давлениях и интегрированный перепускной клапан. Каждый из регулятора и интегрированного перепускного клапана содержит узел управления, выполненный с возможностью перемещения между открытым положением и закрытым положением.

Изобретение относится к узлу гидравлического насоса и может быть использовано в системе, включающей дисковые тормоза мокрого типа для распределения крутящего момента между передними и задними осями полного привода дорожного транспортного средства и/или между левыми и правыми колесами транспортного средства с двух- или четырехколесным приводом.

Изобретение относится к области проектирования насосов-дозаторов, в частности насосов-дозаторов блоков одоризации газораспределительных станций (ГРС), служащих для подачи одорантов в газ для придания ему запаха.
Изобретение относится к области нефтедобычи, в частности к составам для воздействия на добываемые флюиды, предназначенным для образования стойкой водонефтяной эмульсии, а также для предотвращения отложения асфальтенов, смол, асфальто-смоло-парафиновых веществ (АСПВ) при добычи и транспортировки нефти.

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения (АСПО).

Изобретение относится к нефтегазовой отрасли. В способе очистки призабойной зоны пласта (ПЗП) от глинистых образований удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований.

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы.

Группа изобретений относиться к нефтедобыче. Технический результат - уменьшение налипание битума и/или тяжелых нефтяных материалов на металлические поверхности, такие как буровые головки, бурильная колонна, обсадная колонна и тому подобное, хорошая способность к биологическому разложению и низкая токсичность для водных организмов добавки против образования.

Изобретение относится к способам оценки эффективности ингибитора/диспергатора асфальтена при использовании сырой нефти. Способ оценки эффективности ингибитора/диспергатора асфальтена в сырой нефти, содержит: a) взвешивание первой металлической контрольной пластины; погружение первой металлической контрольной пластины или ее части в первую пробу, в течение первого выбранного периода времени, причем первая проба содержит аликвоту сырой нефти; добавление осаждающего вещества к первой пробе в течение первого выбранного периода времени; извлечение первой металлической контрольной пластины из первой пробы в конце первого выбранного периода времени; и высушивание и взвешивание первой металлической контрольной пластины; b) взвешивание второй металлической контрольной пластины; погружение второй металлической контрольной пластины или ее части во вторую пробу в течение второго выбранного периода времени, где вторая проба содержит аликвоту сырой нефти и ингибитор/диспергатор асфальтена; добавление осаждающего вещества ко второй пробе в течение второго выбранного периода времени; извлечение второй металлической контрольной пластины из второй пробы в конце второго выбранного периода времени; и высушивание и взвешивание второй металлической контрольной пластины; c) определение массы асфальтенов, осажденных на первой металлической контрольной пластине и массы асфальтенов, осажденных на второй металлической контрольной пластине; и d) определение процента ингибирования осаждения асфальтена.
Изобретение относится к добыче нефти, газа или воды из скважин, пробуренных в подземном пласте. Способ обработки повреждения пласта месторождения в подземном пласте месторождения, в котором повреждение пласта вызвано следующими причинами: фильтрационными корками буровых флюидов на масляной основе, фильтрационными корками буровых флюидов на водной основе, нефтепромысловыми отложениями, асфальтеном, парафином, воском, резьбовой смазкой, эмульсией или водяным блоком, включает: введение в подземный пласт месторождения флюида для обработки, содержащего воду и по меньшей мере одно из следующих соединений циклодекстрина или крахмала с ферментом, способным генерировать циклодекстрин из крахмала, а также создание условий флюиду для обработки для устранения повреждения пласта.

Изобретение описывает ингибитор асфальтосмолопарафиновых отложений для парафинистых и высокопарафинистых смолистых нефтей содержит сополимер алкилакрилатов С16-С20 с акрилатом додециламина и толуол, характеризующийся тем, что дополнительно содержит окисленную нефтеполимерную смолу при следующем соотношении компонентов, мас.

Изобретение относится к нефтяной промышленности и может быть использовано на объектах добычи нефти или газа. Устройство включает блок подключения скважинный, корпус которого выполнен в виде трубопровода со сквозным отверстием и соединительными фланцами по краям, насос и емкость для поверхностно-активного вещества.

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения.

Изобретение относится к области добычи природного газа и может быть использовано при разработке газовых месторождений, в призабойной зоне скважин которых может происходить гидратообразование. При сооружении газовой скважины, в призабойной зоне которой возможно гидратообразование, производят перфорацию ее обсадной колонны в интервале залегания продуктивной газовой залежи, спускают колонну насосно-компрессорных труб с пакером и ингибиторным клапаном, приводят пакер в рабочее состояние с изоляцией затрубного пространства от трубного и подают ингибитор гидратообразования по затрубному пространству через ингибиторный клапан в колонну насосно-компрессорных труб в процессе эксплуатации скважины. Пакер на колонне насосно-компрессорных труб устанавливают ниже кровли продуктивной газовой залежи. Ингибитор гидратообразования дополнительно подают в газовую залежь через перфорационные отверстия выше пакера. Предотвращается гидратообразование в призабойной зоне газовых скважин и обеспечивается их стабильная работа. 1 ил.
Наверх