Способ защиты угольной части анода от окисления

Изобретение относится к производству алюминия в электролизерах с обожженным анодом. Способ защиты угольной части анода от окисления включает нанесение глинозема на подошву и боковые стенки анода путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с образованием зазора 5-10 см между боковыми поверхностями стенок, подошвой анода и стенками емкости и воздействия на анод в течение 8-12 с ультразвуком от 2-5 атм и частотой 18 кГц посредством источников мощностью от 5 до 10 кВт, которые устанавливают в боковых стенках и днище емкости с внешней стороны. Обеспечивается снижение окисления анода в токе воздуха и СО/СО2 и образование на подошве анода неровностей в виде корок застывшего электролита и частичек угольной пены при установке в электролизер холодного анода. 1 ил.

 

Заявляемое изобретение относится к производству алюминия в электролизерах с обожженным анодом, и может быть использовано для защиты анода от окисления воздухом и оксидом углерода, образующимся при его сгорании, а также от образования на его подошве неровностей, или т.н. «конусов».

Известен способ защиты анода от окисления путем загрузки на его поверхность укрывного материала, представляющего собой смесь глинозема и измельченного оборотного электролита [Янко Э.А. Производство алюминия. Пособие для мастеров и рабочих цехов электролиза алюминиевых заводов, С. Петербург, изд-во С. Петербургского университета, 2007. - 305 с.].

Недостаток известного способа заключается в высокой пористости укрывного материала, способной обеспечить доступ воздуха к аноду, и в необходимости периодического удаления укрывного материала с анода при выполнении технологических операций, связанных с разгерметизацией укрытия.

Известен способ снижения окисляемости анода на воздухе путем добавки в него на стадии формирования до 5% масс. глинозема [Т. Muftuoglu and Н.А. Оуе. Reactivity and electrolytic consumption of anode carbon witch various addivites / Light Metals 1987, pp. 667-672.].

Недостаток известного способа заключается в том, что реакционная способность анода с добавкой глинозема в среде CO2 не уменьшается, поскольку при высоких температурах массовый перенос газа-реагента с внешней поверхности вглубь анода по порам становится более вероятным.

Известны способы выравнивания подошвы анода алюминиевого электролизера путем снижения глубины погружения анода в электролит до возникновения анодного эффекта и сжигания, таким образом, неровности [А.с. СССР №773148, опубл. 23.10.1980], и увеличением межэлектродного расстояния на высоту неровности, путем подачи к подошве анода газ-окислитель в импульсном режиме с интервалом 1-3 с под давлением 1-2 атм [А.с. СССР №712461, опубл. 30.01.1980].

Недостатками известных способов заключаются в том, что они предназначены лишь для устранения неровностей и не решают проблему защиты угольной части анода.

Наиболее близким по технической сущности и достигаемому результату является RU 238774 МПК С25С 3/12 (2006.01) Опубликовано: 27.04.2010 Бюл. №12 КОММОНВЕЛТ САЙЕНТИФИК ЭНД ИНДАСТРИАЛ РИСЕРЧ ОРГАНИЗЕЙШН (AU)

Задачей заявляемого изобретения является снижение окисления анода в токе воздуха и СО/СО2, и как следствие риска образования на его подошве неровностей в виде корок застывшего электролита и частичек угольной пены при установке в электролизер холодного анода.

Достигается это тем, что в способе защиты угольной части анода от окисления, включающем нанесение глинозема на подошву и боковые стенки анода, согласно изобретению, нанесение глинозема на подошву и боковые стенки анода ведут путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с образованием зазора 5-10 см между боковыми поверхностями стенок, подошвой анода и стенками емкости, и воздействия на анод в течение 8-12 сек ультразвуком от 2-5 атм, и частотой 18 кГц посредством источников мощностью от 5 до 10 кВт, которые устанавливают в боковых стенках и днище емкости с внешней стороны Звуковое давление от 2 до 5 атм на частоте 18 кГц в течение 8…12 с обосновывается тем, что при этих параметрах звуковой эффект превышает силы поверхностного натяжения более чем в 10 раз, и скорость подъема водяной суспензии коллоидного глинозема в поры в начальный момент достигает 100…120 см/с, постепенно снижаясь до 15…20 см/с. Таким образом высота подъема водяной суспензии коллоидного глинозема в поры за период 8…12 с достигает 60…70 см, т.е. той высоты, на которую сгорает анод за время всего его срока службы в электролизере, и в течение всего срока службы анода обеспечивается его защита от окисления проникающим в поры СО/СО2 и воздухом.

Зазор между боковыми поверхностями, подошвой угольной части анода и стенками емкости, составляет от 5 до 10 см. и обеспечивает проникновение глиноземной суспензии в поверхность анода и предотвращает его от окисления. При зазоре больше 10 см давление ультразвука, проходящего через слой суспензии, снижается, что уменьшает глубину проникновения водяной суспензии коллоидного глинозема. При зазоре меньше 5 см возникает риск истирания о стенки емкости боковых поверхностей анода в случае неточности его установки в емкость.

Заявляемый способ защиты анода от окисляемости и риска образования неровностей на его подошве поясняется графически. На фиг. изображен: 1 - анод; 2 - анодная штанга; 3 - емкость; 4 - глиноземная суспензия; 5 - магнитострикционные излучатели УЗ; 6 - соединительный провод; 7 - генератор УЗ колебаний.

Заявляемый способ защиты анода осуществляется следующим образом. Анод 1 помещается в емкость 3, наполненную суспензией коллоидного глинозема 4. Зазор между подошвой анода и днищем емкости обеспечивается удержанием анода за анодную штангу 2 краном. Звуковое давление в емкости создается с помощью магнитострикционных излучателей 5, подсоединенных с помощью соединительных проводов 6 к генератору УЗ колебаний.

Слой коллоидного глинозема, нанесенный на боковые поверхности анода, защищает их от окисления воздухом, который может проникнуть через поры укрывного материала.

Проникновению вглубь анода оксиду углерода препятствуют заполненные под воздействием звукокапиллярного эффекта поры на высоту на 60…70 см, т.е. практически на высоту, равную высоте сгорания анода.

Слой глинозема, нанесенный на подошву анода, в первоначальный момент, после установки в электролизер холодного анода, является электроизолятором, снижающим время нагрева анода до рабочей температуры. При этом частицы застывшего электролита и угольной пены, налипшие на подошву анода, не контактируют с угольной частью анода, создавая с ней монолитного образования. По мере нагрева анода до рабочей температуры, защитный слой глинозема вместе с застывшими частицами электролита и угольной пены растворяется в электролите предотвращая таким образом риск образования неровностей на подошве анода (так называемых «конусов», «отставаний»). Происходит это за счет дополнительного снабжения пространства под подошвой анода ионами кислорода.

Преимущество заявляемого способа заключается в том, что он обеспечивает надежную защиту поверхностей анода в течение всего срока его службы, в т.ч. при удалении с них укрывного материала, а также предотвращает риск образования на подошве анода неровностей, который происходит при отсутствии в поданодном слое электролита ионов кислорода и разряжении оксифторидных комплексов.

Способ защиты угольной части анода от окисления, включающий нанесение глинозема на подошву и боковые стенки анода, отличающийся тем, что нанесение глинозема на подошву и боковые стенки анода ведут путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с образованием зазора 5-10 см между боковыми поверхностями стенок, подошвой анода и стенками емкости и воздействия на анод в течение 8-12 с ультразвуком от 2-5 атм и частотой 18 кГц посредством источников мощностью от 5 до 10 кВт, которые устанавливают в боковых стенках и днище емкости с внешней стороны.



 

Похожие патенты:

Изобретение относится к электролизеру для получения алюминия электролизом в расплаве электролита с инертным анодом. Инертный анод содержит тело анода, имеющее по меньшей мере одну боковую стенку, полость, выполненную внутри тела анода вдоль его оси и имеющую верхнее отверстие сверху тела анода, при этом боковая стенка анода окружает полость по ее периметру, штырь, имеющий первый конец, соединенный с источником тока, и второй конец, противоположный первому концу, причем второй конец проходит вниз в полость в теле анода через его верхнее отверстие до позиции, расположенной выше границы раздела расплав электролита-газ в электролизере, оболочку, полностью окружающую второй конец штыря внутри полости и проходящую из полости к первому концу для окружения части штыря, находящейся выше полости, элемент, проходящий от второго конца штыря через границу раздела расплав электролита-газ в электролизере, и заполнитель, удерживаемый в полости между внутренней поверхностью тела анода и штырем и предназначенный для поддержания электрического соединения между штырем и телом анода.

Изобретение относится к производству алюминия. Ошиновка поперечно расположенных в сериях алюминиевых электролизеров состоит из анодной части, выполненной с возможностью соединения анодов в серии электролизеров посредством анодных штанг, катодной части, состоящей из катодных стержней с гибкими пакетами и выполненной с возможностью соединения с анодной частью следующего в серии электролизера посредством шинного модуля, содержащего сборные катодные шины на входной и выходной стороне катодного кожуха электролизера, расположенные под днищем электролизера соединительные шины, по крайней мере один анодный стояк, расположенный на входной стороне и по крайней мере один анодный стояк, расположенный на выходной стороне электролизера.

Изобретение относится к монтажу подины алюминиевого электролизера. Способ включает изготовление катодных секций путем нагрева угольного блока и стального стержня, нанесения в паз угольного блока углеродсодержащего связующего, укладки в паз стального стержня и вибрационного уплотнения стержня в пазу посредством установленного на него вибратора со смещением от его центра тяжести в сторону потая и монтаж изготовленных катодных секций в подине электролизера.

Изобретение относится к катоду для производства меди электролизом из электролитического раствора, полой штанге упомянутого катода и способу изготовления упомянутого катода.
Изобретение относится к нерастворимому аноду электролизеров для получения сплавов металлов в порошкообразном виде. Рабочая часть анода состоит из диэлектрической подложки с активным слоем, содержащим спеченную смесь оксида рутения и оксидного стекла в объемном соотношении от 4/1 до 2/1.
Изобретение относится к области металлургии благородных металлов, в частности к извлечению серебра из кислых растворов нитрата серебра методом электроэкстракции с использованием нерастворимых термообработанных титановых анодов.

Изобретение относится к извлечению индия электролизом. Предложен электролизер экстракции индия из выпуска расплава конденсата рафинирования чернового олова из вакуумной печи.

Изобретение относится к технологии изготовления медно-титановых токопроводящих контактных элементов. Медный и титановый компоненты сопрягают друг с другом и соединяют в медно-титановый токопроводящий контактный элемент.

Изобретение может быть использовано при изготовлении электрохимического анода, сформированного с использованием сварки трением с перемешиванием (FSW). Электрохимический анод включает токопроводящую шину и свинецсодержащий анодный лист, электрически связанный с токопроводящей шиной.

Изобретение относится к аноду для выделения кислорода при высоком анодном потенциале, содержащему основу из титана или его сплавов, первый промежуточный слой диоксида марганца, нанесенный на основу, второй промежуточный слой оксидов олова и сурьмы, нанесенный на первый промежуточный слой, и внешний слой, состоящий из диоксида свинца.

Группа изобретений относится к электролизу солевого расплава. Электролизер содержит металлосборную камеру, электролизную камеру и по меньшей мере две электролитических ячейки в электролизной камере.

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%.

Изобретение относится к конструкции катодного устройства электролизера для производства алюминия электролизом. Катодное устройство содержит металлический кожух, футерованный боковыми блоками, установленными на бровку, подовые углеграфитовые блоки с токоподводящими стержнями, цоколь из теплоизоляционного слоя и огнеупорного слоя, выполненного из смеси порцелланита 23-26 мас.

Изобретение относится к области электрохимического получения компактных слоев элементарного металлического рения из его соединений путем электролиза расплавов. Проводят электролиз ренийсодержащего компонента в расплаве солей, где в качестве ренийсодержащего компонента используют перренат калия.

Группа изобретений относится к электролитическому получению алюминия. Электролизер для получения алюминия, содержащий анод, катод в отстоящем от анода положении, ванну расплавленного электролита в жидкостном сообщении с анодом и катодом, корпус электролизера, содержащий боковую стенку и подину.

Изобретение относится к производству алюминия в электролизерах с обожженными анодами. Способ включает подачу воздушно-глиноземной смеси в течение 5÷60 с под углом от 3 до 10° по отношению к аноду при соотношении глинозема и сжатого воздуха 1:0,1÷0,15.

Изобретение относится к электролизерам для получения алюминия. Электролизер включает размещенный в анодном кожухе самоспекающийся анод, токоподводящие штыри и систему газоотсоса, при этом самоспекающийся анод на границе между коксопековой композицией и зоной полукокса разделен горизонтальной перегородкой, размещенной на высоте от нижней кромки анодного кожуха, равной 0,7÷0,8 от его высоты, и оборудованной вертикальными ячейками с образованием анодных блоков, удерживаемых от падения в расплав токопроводящими штырями, при этом ячейки выполнены длиной, равной 0,1÷0,2 длины анодного кожуха, и шириной, равной 0,45÷0,495 ширины анодного кожуха, и размещены с зазором между ними для обеспечения движения образующихся анодных газов в систему газоотсоса.

Изобретение относится к способу и устройству для определения состава электролита на основе дифференциально-термических измерений для управления процессом электролиза алюминия.
Изобретение относится к способу подготовки обожженных анодов для электролиза алюминия. Способ включает нагрев анода перед помещением его в расплав электролита.

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных электродов для реверса тока, размещенных между монополярными катодами и анодами и электрически соединенных между собой с возможностью подключения с одновременным отключением катодов или анодов и подачи посредством упомянутых дополнительных электродов противоположного заряда на пассивирующиеся монополярные электроды, при этом дополнительные электроды выполнены из материала, нерастворимого в водном растворе электролита.

Изобретение относится к электролизеру для получения алюминия электролизом в расплаве электролита с инертным анодом. Инертный анод содержит тело анода, имеющее по меньшей мере одну боковую стенку, полость, выполненную внутри тела анода вдоль его оси и имеющую верхнее отверстие сверху тела анода, при этом боковая стенка анода окружает полость по ее периметру, штырь, имеющий первый конец, соединенный с источником тока, и второй конец, противоположный первому концу, причем второй конец проходит вниз в полость в теле анода через его верхнее отверстие до позиции, расположенной выше границы раздела расплав электролита-газ в электролизере, оболочку, полностью окружающую второй конец штыря внутри полости и проходящую из полости к первому концу для окружения части штыря, находящейся выше полости, элемент, проходящий от второго конца штыря через границу раздела расплав электролита-газ в электролизере, и заполнитель, удерживаемый в полости между внутренней поверхностью тела анода и штырем и предназначенный для поддержания электрического соединения между штырем и телом анода.

Изобретение относится к производству алюминия в электролизерах с обожженным анодом. Способ защиты угольной части анода от окисления включает нанесение глинозема на подошву и боковые стенки анода путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с образованием зазора 5-10 см между боковыми поверхностями стенок, подошвой анода и стенками емкости и воздействия на анод в течение 8-12 с ультразвуком от 2-5 атм и частотой 18 кГц посредством источников мощностью от 5 до 10 кВт, которые устанавливают в боковых стенках и днище емкости с внешней стороны. Обеспечивается снижение окисления анода в токе воздуха и СОСО2 и образование на подошве анода неровностей в виде корок застывшего электролита и частичек угольной пены при установке в электролизер холодного анода. 1 ил.

Наверх