Тонкопленочный градиентометр

Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности. При этом чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности. Изобретение обеспечивает снижение величины шумов градиентометра и расширение рабочей полосы частот. 2 ил.

 

Изобретение относится к области измерительной техники, а более конкретно - к устройствам измерения градиентов слабых магнитных полей.

Известен класс приборов [Афанасьев, Ю.В. Средства измерений параметров магнитного поля / Ю.В. Афанасьев, Н.В. Студенцов, В.Н. Хорев, Е.Н. Чечурина, А.П. Щелкин. - Л.: Энергия. Ленингр. отд-ние, 1979. - 320 с., ил.], предназначенных для измерения градиента магнитного поля. Такие приборы находят широкое применение в магниторазведочных работах, каротажных исследованиях, магнитной дефектоскопии, при поиске массивных ферромагнитных объектов, в исследованиях магнитных полей биологических объектов и т.д. Чувствительная схема однокомпонентного градиентометра обычно состоит из двух включенных дифференциально измерительных преобразователей магнитной индукции, разнесенных на некоторое расстояние, называемой базой. В такой схеме построения градиентометра собственные шумы магнитометров являются некоррелированными, в результате чего происходит суммирование этих шумов на вычитающем элементе градиентометра.

Известна конструкция градиентометра, охваченного общей обратной связью [Патент США №6339328, МПК G01R 33/02, опубл. 01.15.2002], состоящего, по крайней мере, из двух датчиков магнитного поля (магнитометров), при этом как минимум у двух магнитометров направления максимальной чувствительности ориентированы соосно. В качестве датчиков магнитного поля могут быть использованы СКВИД-магнитометры, датчики Холла, феррозондовые магнитометры или магниторезистивные магнитометры. Магнитометр также включает вычислительный блок, на основе которого в цифровом виде реализованы алгоритмы адаптивной балансировки выходных сигналов магнитометров. В предпочтительном варианте исполнения градиентометр может содержать как минимум восемь магнитометров в трехмерном варианте компоновки и набор из трех пар общих ортогональных колец Гельмгольца, включенных в цепь обратной связи, по одной паре колец на каждое направление х, у, z, таким образом, что пять независимых компонент градиента магнитного поля могут быть измерены. Градиентометр также может использоваться для измерения компонентов градиента магнитного поля второго и более высокого порядка.

Известна конструкция градиентометра, имеющего в составе дополнительный магнитометр, предназначенный для реализации схемы вычитания постоянной составляющей магнитного поля из других магнитометров [Патент США №5122744, МПК G01R 33/035, опубл. 16.06.1992]. Такой градиентометр имеет, по крайней мере, три векторных (трехкомпонентных) СКВИД-магнитометра. Градиентометр включает опорный магнитометр и множество измерительных магнитометров, причем сигнал опорного магнитометра предназначен для компенсации постоянной составляющей магнитного поля, осуществляемой цепью обратной связи с компенсационными катушками. Подобным образом могут быть построены и схемы измерения градиентов более высокого порядка.

Недостатком известных конструкций является отсутствие возможности обеспечить одновременно высокую чувствительность градиентометра и широкую полосу частот с помощью предлагаемых магнитных датчиков. Как известно, при использовании в качестве чувствительных элементов градиентометра высокочувствительных СКВИД-магнитометров или феррозондовых магнитометров возможно достижение высокой чувствительности устройства только в ограниченном диапазоне частот - как правило, с верхней граничной частотой не более 10 кГц. Кроме того, известным недостатком СКВИД-магнитометров является необходимость их охлаждения до криогенных температур, что значительно затрудняет их практическое использование. Широкая полоса частот реализуется при использовании в качестве чувствительных элементов градиентометра датчиков Холла или магниторезистивных магнитометров, однако такие устройства обладают низкой чувствительностью.

Известна конструкция трехкомпонентного градиентометра, работающего при комнатной температуре [Koch, R.Н. Room temperature three sensor magnetic field gradiometer / R.H. Koch, G.A. Keefe, G. Allen // Review of Scientific Instruments, - 1996. - Vol. 67. - №1. - P. 230-235 (прототип)]. Устройство содержит трехкомпонентные феррозондовые магнитометры, не требующие охлаждения до криогенных температур. Для каждого из направлений измерений в конструкции предусмотрен опорный феррозондовый магнитометр, измеряющий магнитной поле. Выходной сигнал опорного магнитометра усиливается, буферизируется и прикладывается через переменные резисторы к двум компенсационным катушкам, внутри каждой из которых расположен измерительный феррозондовый магнитометр. Величины сопротивлений резисторов подбираются таким образом, чтобы при нахождении конструкции в однородном поле оба измерительных градиентометра находились в нулевом магнитном поле. Разница между выходными сигналами измерительных магнитометров, деленная на расстояние между ними (базу градиентометра), есть градиент магнитного поля в данном направлении. Описанный градиентометр взят за прототип заявленного изобретения.

Недостатком прототипа является его относительно низкая чувствительность, обусловленная высоким уровнем шумов используемых в его конструкции феррозондовых магнитометров. Кроме того, феррозондовые магнитометры имеют узкую полосу рабочих частот, как правило верхняя граничная частота которых не более 10 кГц.

Техническим результатом заявленного технического решения является снижение величины шумов градиентометра и расширение рабочей полосы частот.

Технический результат достигается тем, что в тонкопленочном градиентометре, для измерения градиентов слабых магнитных полей, включающем два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, новым является то, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается использованием высокочувствительных магнитометров на основе резонаторов с тонкими магнитными пленками, причем существенным отличием является использование для двух магнитометров градиентометра одного общего генератора СВЧ-накачки.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Заявляемое изобретение представляет собой совокупность известных элементов, выбор которых и связь между которыми осуществлены на основании известных правил, но совместное использование этих элементов в такой функциональности не следует явным образом из известного уровня техники и способствует снижению величины шумов градиентометра и расширению рабочей полосы частот.

На основании вышеизложенного, заявляемое техническое решение соответствует критерию патентоспособности «изобретательский уровень».

Данное изобретение поясняется чертежами: на фиг. 1 показана печатная плата градиентометра с установленными электронными компонентами; на фиг. 2 показана конструкция градиентометра.

На многослойной печатной плате (1) тонкопленочного градиентометра (фиг. 1) размещен генератор (2) СВЧ-накачки, выход которого подключен к усилителю (3) мощности. Выход усилителя (3) мощности подключен параллельно к конденсаторам (4) и полосковым линиям (5) двух датчиков градиентометра. Тонкие магнитные пленки (ТМП) (6) размещены под полосковыми линиями (5) таким образом, чтобы высокочастотное магнитное поле было направлено строго вдоль оси трудного намагничивания ТМП. Величины емкостей конденсаторов (4) и индуктивностей полосков (5) выбраны таким образом, чтобы резонансные частоты образованных ими колебательных контуров находились в области частот 600-800 МГц (для ТМП состава Ni80Fe20). Входы амплитудных детекторов (7) подключены к колебательным контурам, образованным конденсаторами (4) и полосковыми линиями (5). Выходы амплитудных детекторов (7) подключены последовательно к операционным усилителям (размещены на нижней стороне печатной платы (1)) и компенсационным катушкам (8). Выходные сигналы операционных усилителей являются выходными сигналами магнитометров. Выходы магнитометров подключены к вычитающему элементу градиентометра (размещен на нижней стороне печатной платы (1)). Постоянное поле смещения в ТМП (6) формируется магнитными системами (9), состоящими из постоянных магнитов и направлено под небольшим углом к осям трудного намагничивания ТМП. Печатная плата (1), компенсационные катушки (8) и магнитные системы (9) размещены на основании (10). Выходной сигнал вычитающего элемента является выходным сигналом градиентометра.

Устройство работает следующим образом. Рассмотрим работу одного датчика градиентометра. Сигнал с размещенного на печатной плате (1) общего для двух датчиков генератора (2) СВЧ-накачки поступает на общий усилитель (3) мощности, а затем на конденсатор (4) и полосковую линию (5), формирующую магнитное поле в ТМП (6). Высокочастотное магнитное поле, создаваемое полосковой линией (5), направлено вдоль оси трудного намагничивания ТМП (6) и возбуждает ферромагнитный резонанс (ФМР). Условия возбуждения ФМР определяются величиной и направлением поля смещения. Так как поле смещения ориентировано под небольшим углом к оси трудного намагничивания ТМП (6), а внешнее измеряемое поле направлено вдоль оси легкого намагничивания ТМП (6), изменение величины измеряемого поля приводит к изменению параметров ФМР, что в свою очередь приводит к изменению потерь, вносимых ТМП (6) в колебательный контур, образованный конденсатором (4) и полосковой линией (5). Изменение потерь в контуре регистрируется амплитудным детектором (7). Повышение долговременной стабильности коэффициента преобразования датчика достигается путем использования компенсационного метода измерения, для этого выходной сигнал магнитометра подается на катушку (8) обратной связи. Постоянное поле смещения формируется магнитной системой (9). Аналогично работает второй датчик градиентометра. Общая для двух датчиков печатная плата (1), компенсационные катушки (8) и магнитные системы (9) объединены основанием (10). Сигналы двух магнитометров поступают на вычитающий элемент градиентометра, выходной сигнал которого передается потребителю. Основным источником шумов датчиков слабых магнитных полей на основе микрополосковых резонаторов с тонкими магнитными пленками является генератор СВЧ-накачки [Бабицкий, А. Магнитометр слабых квазистационарных и высокочастотных полей на резонансных микрополосковых преобразователях с тонкими магнитными пленками / А.Н. Бабицкий, Б.А. Беляев, Н.М. Боев, Г.В. Скоморохов, А.В. Изотов, Р.Г. Галеев // Приборы и техника эксперимента, - 2016. - №3. - С. 96-104.].

Экспериментальные исследования тонкопленочного градиентометра показали, что применение одного генератора СВЧ-накачки для двух чувствительных элементов градиентометра позволяет вычитать шумы отдельных датчиков на вычитающем элементе градиентометра, что снижает итоговый уровень шума. Использование в градиентометре датчиков слабых магнитных полей на основе тонких магнитных пленок позволило существенно расширить частотный диапазон устройства, на практике разработаны конструкции на частоты до 105 Гц.

Тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, отличающийся тем, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может найти применение для измерения слабых магнитных полей. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса содержит магниточувствительный элемент, выполненный из двух идентичных аморфных ферромагнитных микропроводов в стеклянной оболочке или с удаленной стеклянной оболочкой, размещенных внутри одной многовитковой катушки, причем высокочастотное возбуждение микропроводов осуществляется от многовитковой катушки, а регистрация сигналов с двух микропроводов осуществляется с помощью дифференциального усилителя.

Изобретение относится к области измерительной техники и предназначено для поиска кабельной линий с током, утерянных трубопроводов и буров в геологических скважинах, обнаружения дефектов печатных плат, поиска намагниченных предметов в теле человека, для обнаружения скрытого оружия на контрольных пунктах и т.д.

Изобретение относится к области измерительной техники и предназначено для поиска кабельных линий с током, утерянных трубопроводов и буров в геологических скважинах, обнаружения дефектов печатных плат, поиска ферромагнитных предметов в теле человека, для обнаружения скрытого оружия на контрольных пунктах и т.д.

Изобретение относится к магнитным измерениям и может быть использовано при разработке градиентометров для геофизических исследований. .

Изобретение относится к устройствам магнитометрической техники и может быть использовано для повышения степени астатичности сверхпроводникового измерительного преобразователя градиента магнитной индукции.

Изобретение относится к устройствам для исследования параметров магнитного поля при неразрушающем контроле ферромагнитных изделий. .

Изобретение относится к средствам регистрации тонкой структуры магнитного поля в ближней зоне источника и может быть использовано для измерения первых производных пространственных производных компонент вектора напряженности магнитного поля.

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля.

Изобретение относится к магнитным измерениям и предназначено для контроля значений параметров магнитного поля (магнитного состояния) ферромагнитных объектов сложной формы.

Группа изобретений относится к медицинской технике, а именно к средствам мониторинга пациентов с использованием пространственно разнесенных антенн. Устройство для приема радиочастот (RF) при мониторинге пациентов содержит первую и вторую радиочастотные антенны в различных пространственных положениях или ориентациях, первый и второй радиочастотные приемники, каждый из которых соединен с соответствующей антенной из первой и второй радиочастотных антенн и которые осуществляют прием и демодуляцию радиочастотных сигналов по меньшей мере первой и второй несущих частот для восстановления пакетов данных по меньшей мере от первого датчика для медицинского мониторинга, который передает пакеты данных, содержащие информацию, относящуюся к первому показателю жизнедеятельности, в радиочастотном сигнале первой несущей частоты, и от второго датчика для медицинского мониторинга, который передает пакеты данных, содержащие информацию, относящуюся ко второму показателю жизнедеятельности, в радиочастотном сигнале второй несущей частоты, обрабатывающее или управляющее устройство, соединенное с первым и вторым радиочастотными приемниками и выполненное с возможностью управления этими радиочастотными приемниками для обеспечения циклического перехода между приемом и демодуляцией обоими приемниками радиочастотных сигналов первой несущей частоты одновременно с восстановлением избыточных пакетов данных, содержащих информацию, относящуюся к первому показателю жизнедеятельности, от первого датчика для медицинского мониторинга, и приемом и демодуляцией обоими приемниками радиочастотных сигналов второй несущей частоты одновременно с восстановлением избыточных пакетов данных, содержащих информацию, относящуюся ко второму показателю жизнедеятельности, от второго датчика для медицинского мониторинга, причем первый датчик для медицинского мониторинга передает пакеты данных с первой периодичностью, второй датчик для медицинского мониторинга передает пакеты данных со второй периодичностью и обрабатывающее устройство управляет приемниками для обеспечения циклического перехода между приемом сигналов первой и второй несущих частот таким образом, чтобы сигнал каждой несущей частоты принимался в течение заданного периода времени, причем в течение начального получения данных общая сумма циклически повторяющихся заданных периодов времени отличается от максимального временного интервала между операциями передачи пакетов для каждого из датчиков для медицинского мониторинга, причем обрабатывающее устройство дополнительно выполнено с возможностью регулирования заданных периодов времени на основе моментов поступления выбранных пакетов данных.

Группа изобретений относится к магнитно-резонансной томографии. Система магнитно-резонансной томографии для сбора магнитно-резонансных данных из зоны визуализации предписывает процессору, управляющему МРТ-системой, собирать магнитно-резонансные данные визуализации при включенном радиочастотном возбуждении радиочастотной системы; собирать радиочастотные данные шума с использованием катушки обнаружения РЧ шума, при этом радиочастотные данные шума собираются одновременно с магнитно-резонансными данными визуализации; собирать калибровочные магнитно-резонансные данные при выключенном радиочастотном возбуждении радиочастотной системы; собирать опорные радиочастотные данные с использованием катушки обнаружения РЧ шума, причем опорные радиочастотные данные собираются одновременно с калибровочными магнитно-резонансными данными; и вычислять калибровку шума с использованием опорных радиочастотных данных и калибровочных магнитно-резонансных данных.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Группа изобретений относится к радиочастотной катушке для использования в медицинской модальности, которая включает в себя систему магнитно-резонансной томографии.

Изобретение относится к медицинской технике, а именно к области направления заряженных частиц в целевую зону в пределах исследуемого субъекта, причем частицы наводят с использованием магнитно-резонансной томографии.

Изобретение относится к устройствам для определения магнитной восприимчивости разделяемых веществ. Электромагнитное устройство для определения магнитной восприимчивости образцов содержит полюсные наконечники в виде полусфер для создания градиентного магнитного поля, передвижной датчик для измерения напряженности или индукции поля в межполюсной области, весы для измерения пондеромоторной силы, действующей на изучаемый образец, при этом устройство снабжено оптико-механической системой позиционирования измерительного датчика и образца в межполюсной области, при этом в качестве указанных весов для измерения пондеромоторной силы используются электронные весы на пьезоэлементах для исключения перемещения образца во время действия этой силы.

Изобретение относится к устройствам для проведения векторных измерений слабых геомагнитных полей. Однокомпонентный сенсор геомагнитных полей содержит три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты, одноименные полюсы которых присоединены к обеим сторонам внутренней пластины, каждый генератор установлен на диэлектрической подложке с металлизированным основанием, генераторы размещены в зазорах системы намагничивания между магнитами и присоединены металлизированным основанием к противоположным сторонам внутренней стальной пластины, при этом пленки ЖИГ резонаторов выполнены в виде квадрата или диска, входные и выходные преобразователи СВЧ сигналов расположены на противоположных сторонах резонаторов и ориентированы вдоль ортогональных осей резонаторов.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры в магниторезонансной среде. Зонд 130 для измерения температуры для использования в магниторезонансной среде содержит удлиненную подложку 202, по меньшей мере одну электропроводящую трассу 200, 200a, 200b, 200a', 200b' с высоким сопротивлением, напечатанную по меньшей мере на одном термисторе 204, который расположен на подложке и электрически соединен с трассой.

Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности. При этом чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности. Изобретение обеспечивает снижение величины шумов градиентометра и расширение рабочей полосы частот. 2 ил.

Наверх