Разнотемпературная конденсационная камера



Разнотемпературная конденсационная камера
Разнотемпературная конденсационная камера
Разнотемпературная конденсационная камера
B01D2247/103 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2687909:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (RU)

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности. Разнотемпературная конденсационная камера содержит корпус 1, нижнее 15 и верхнее 14 днища с патрубками подвода 12 и отвода 13 очищаемого газа, установленные на корпусе 1. В корпусе 1 размещены холодная и горячая стенки с устройствами обеспечения разности температур их наружных поверхностей, образующие газовый тракт 2 для очищаемого газа. Горячая стенка выполнена в виде витков цилиндрической спирали 3, при этом одна часть холодной стенки выполнена в виде охлаждаемой стенки 5 корпуса 1 камеры, а другая часть холодной стенки выполнена в виде охлаждаемого цилиндра 4, установленного в центральной части упомянутой спирали 3. Спиральная организация очищаемого потока способствует увеличению зоны его контакта с разнотемпературной камерой и созданию вихревых потоков из-за центробежных сил и трения о стенки разнотемпературного канала, создающих дополнительные условия для соприкосновения и увеличения конденсирующихся частиц. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности, в пищевой промышленности.

Известна разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, содержащая нижнее днище, верхнее днище, холодную и горячую боковые стенки тракта с устройствами обеспечения разности температур их наружных поверхностей, при этом верхнее и нижнее днища соединены между собой по периферийной части при помощи боковых стенок с образованием замкнутой полости, в стенках которой выполнены разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений, боковые стенки тракта выполнены состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта, при этом тракт образован верхним, нижним днищами и боковыми стенками тракта (патент РФ №2478417, Заявка: 2010129716/05, 15.07.2010 МПК: B01D 47/05-прототип).

Указанная разнотемпературная конденсационная камера работает следующим образом.

Очищаемый воздух поступает в компрессор, где происходит его сжатие до заданных параметров. Из компрессора сжатый очищаемый воздух подается в увлажнитель сжатого воздуха и далее в подогреватель, где ему придается требуемая влажность и температура. Далее сжатый воздух, вырабатываемый компрессором, прошедший через увлажнитель сжатого воздуха и подогреватель, подается в разнотемпературную камеру, в которой происходит конденсация водяных паров на ядрах конденсации, например механических примесях, газовых ионах и на поверхности самопроизвольно образующихся зародышей, и их рост до размеров капель.

Проходя через образованную зону конденсации в разнотемпературном канале, содержащиеся в очищаемом потоке воздуха аэрозольные частицы представляют собой готовые центры конденсации, что отражается на эффективности всей установки. В этой зоне газообразные и жидкостные примеси, присутствующие в воздушном потоке, конденсируются и оседают на поверхности присутствующих центров, тем самым утяжеляя их до размера капель, которые затем осаждаются на дно канала.

Основными недостатками известной камеры являются: значительные габаритные размеры камеры, относительно небольшая рабочая длина контакта очищаемого потока со стенками камеры, обуславливающая громоздкость всей конструкции при необходимости более длительного контакта потока со стенками камеры, а также недостаточно эффективное отделение капель конденсата из потока очищаемого газа, что снижает эффективность процесса очистки и приводит к значительным потерям энергии.

Задачей предложенного технического решения является устранение указанных недостатков и создание компактной разнотемпературной конденсационной камеры, имеющей большую зону контакта очищаемого газового потока со стенками камеры, применение которой позволит обеспечить более полное отделение конденсата и механических примесей от потока газа, подвергаемого очистке.

Решение указанной задачи достигается тем, что в предложенной разнотемпературной конденсационной камере, содержащей корпус, нижнее и верхнее днища с патрубками подвода и отвода очищаемого газа, установленные на корпусе, при этом в корпусе размещены холодная и горячая стенки с устройствами обеспечения разности температур их наружных поверхностей, образующие газовый тракт для очищаемого газа, отличающаяся тем, что горячая стенка выполнена в виде витков цилиндрической спирали, при этом одна часть холодной стенки выполнена в виде охлаждаемой стенки корпуса камеры, а другая часть холодной стенки выполнена в виде охлаждаемого цилиндра, установленного в центральной части упомянутой спирали.

В варианте исполнения для упрощения конструкции горячая стенка выполнена в виде витков цилиндрической спирали с размещенным на ее поверхности электронагревательным элементом.

В варианте исполнения для упрощения конструкции и улучшения конденсации охлаждаемая стенка корпуса камеры выполнена в виде двойной стенки с полостью и штуцерами для подвода и отвода охладителя.

Сущность предложенного технического решения иллюстрируется чертежами, где на фиг. 1 показана предложенная разнотемпературная конденсационная камера в разрезе, на фиг. 2 - предложенная разнотемпературная конденсационная камера в аксонометрии.

Предложенная разнотемпературная камера содержит корпус 1, с газовым трактом 2, образованным витками цилиндрической спирали 3, охлаждаемым цилиндром 4, установленным в центральной части упомянутой спирали, и охлаждаемыми стенками корпуса 5. Витки цилиндрической спирали 3 оснащены нагревательным элементом 6. Стенки корпуса 5 имеют полость 7 со штуцерами подвода 8 и отвода 9 охлаждающей жидкости. Между витками цилиндрической спирали 3 и охлаждаемым цилиндром 4, а также между витками цилиндрической спирали 3 и охлаждаемыми стенками корпуса 5 для возможности безпрепятственного стекания конденсата имеются зазоры 10 и 11 соответственно. Газовый тракт 2 соединен с подводящим 12 и отводящим 13 штуцерами для подвода и отвода очищаемого газа. С обоих торцов корпус закрыт крышками 14 и 15, в которых установлены подводящие 8, 12 и отводящие 9, 13 патрубки. На крышке 15 имеется штуцер 16 для отвода конденсата.

Предложенная разнотемпературная конденсационная камера работает следующим образом.

Очищаемый газ подается в подводящий патрубок 12 и далее поступает в газовый тракт 2, образованный витками цилиндрической спирали 3, охлаждаемым цилиндром 4, установленным в центральной части упомянутой спирали, и охлаждаемыми стенками корпуса 5. Витки цилиндрической спирали 3 оснащены нагревательным элементом 6. Стенки корпуса 5 имеют полость 7 со штуцерами подвода 8 и отвода 9 охлаждающей жидкости. Очищаемый газ проходит по разнотемпературному газовому тракту 2, образованному нагретыми витками цилиндрической спирали 3, холодным цилиндром 4, установленным в центральной части упомянутой спирали, и холодными стенками корпуса 5. В упомянутом разнотемпературном газовом тракте 2 происходит конденсация водяных паров на ядрах конденсации, например, механических примесях, газовых ионах и на поверхности самопроизвольно образующихся зародышей, и их рост до размеров капель. Конденсат стекает через зазоры 10 и 11 под действием силы тяжести и отводится из корпуса через штуцер 16. Далее очищенный газ подается в отводящий патрубок 13 и выводится из корпуса 1 наружу для дальнейшего использования.

Разнотемпературная организация процесса конденсации в канале способствует смещению зоны конденсации от холодной стенки в ядро спирального потока и одновременно позволяет расширить ее по поперечному сечению тракта. При таком температурном режиме основная масса конденсата выделяется в ядре потока, потому что там создаются первые условия конденсации. Это приводит к более эффективной работе камеры.

Проходя через образованную зону конденсации в разнотемпературном канале, содержащиеся в очищаемом потоке воздуха аэрозольные частицы представляют собой готовые центры конденсации, что отражается на эффективности всей установки. В этой зоне газообразные и жидкостные примеси, присутствующие в очищаемом потоке, конденсируются и оседают на поверхности присутствующих центров, тем самым утяжеляя их до размера капель, которые затем отводятся через штуцер 16.

Образовавшиеся капли под действием центробежных сил, возникающих при движении очищаемого потока газа в спиралевидном канале, прижимаются к стенкам корпуса и стекают вниз через зазоры 11 к штуцеру 16 для их последующего удаления.

Спиральная организация очищаемого потока способствует увеличению зоны его контакта с разнотемпературной камерой и созданию вихревых потоков из-за центробежных сил и трения о стенки разнотемпературного канала, создающих дополнительные условия для соприкосновения и увеличения конденсирующихся частиц.

Использование предложенного технического решения позволит создать компактную разнотемпературную камеру, имеющую большую зону контакта очищаемого газового потока с рабочей зоной и обеспечить более полное отделение конденсата и механических примесей от потока газа, подвергаемого очистке.

1. Разнотемпературная конденсационная камера, содержащая корпус, нижнее и верхнее днища с патрубками подвода и отвода очищаемого газа, установленные на корпусе, при этом в корпусе размещены холодная и горячая стенки с устройствами обеспечения разности температур их наружных поверхностей, образующие газовый тракт для очищаемого газа, отличающаяся тем, что горячая стенка выполнена в виде витков цилиндрической спирали, при этом одна часть холодной стенки выполнена в виде охлаждаемой стенки корпуса камеры, а другая часть холодной стенки выполнена в виде охлаждаемого цилиндра, установленного в центральной части упомянутой спирали.

2. Разнотемпературная конденсационная камера по п. 1, отличающаяся тем, что горячая стенка выполнена в виде спиральной пластины с размещенным на ее поверхности электронагревательным элементом.

3. Разнотемпературная конденсационная камера по п. 1, отличающаяся тем, что охлаждаемая стенка корпуса камеры выполнена в виде двойной стенки с полостью и штуцерами для подвода и отвода охладителя.



 

Похожие патенты:

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к установкам получения пресной воды из атмосферного воздуха с использованием возобновляемых источников энергии. Установка получения пресной воды из атмосферного воздуха морского базирования снабжена тепловыми трубами с капиллярной структурой и хладагентом внутри них, при этом верхние части тепловых труб с испарительной зоной расположены в конденсационной камере и на них закреплены пластины из теплопроводного материала для охлаждения атмосферного воздуха до точки росы и конденсации на них влаги за счет кипения в испарительной зоне тепловых труб хладагента, а нижние части тепловых труб, вмонтированные в трубы большего диаметра из устойчивого к морской воде материала, которые являются сваями для установки на них камеры конденсации, а также защищают тепловые трубы от воздействия морской воды и механических повреждений, зарыты в грунт на морском дне с более низкой температурой относительно поступающего в конденсационную камеру атмосферного воздуха.

Изобретение относится к нефтегазовой промышленности, в частности к установкам улавливания легких фракций нефти и нефтепродуктов при сливо-наливных операциях и транспортировании.

Изобретение относится к процессам и устройству для выделения этанола из ферментированной биомассы. Способ выделения этанола из ферментированной биомассы, при этом указанный способ включает стадии: (a) предоставления ферментированной биомассы с высоким содержанием этанола; (b) набивки указанной ферментированной биомассы с высоким содержанием этанола в вертикальную дистилляционную колонну; (c) добавления воды в нижнюю часть указанной вертикальной дистилляционной колонны; (d) нагревания нижней части указанной вертикальной дистилляционной колонны для кипячения указанной воды с получением таким образом пара из нижней части; (e) охлаждения верхней части указанной вертикальной дистилляционной колонны для конденсации пара с верхней части с получением таким образом жидкости с верхней части с высоким содержанием этанола и (f) повторного введения фракции указанной жидкости с верхней части с высоким содержанием этанола в верхнюю часть указанной вертикальной дистилляционной колонны, при этом стадии с (d) по (f) выполняют одновременно.

Изобретение относится к установкам для опреснения морской воды и может быть использовано на морских судах для получения пресной воды. Опреснитель содержит теплоизолированную камеру 1, оснащенную патрубком 2 для подвода опресняемой воды, патрубком для отвода опресненной воды, нагревательным элементом 5, конденсатором.

Изобретение относится к периодически действующему десублиматору для разделения продуктов из газовых смесей. Десублиматор содержит цилиндрический корпус для прохождения в его продольном направлении газовой смеси, стенку 10 корпуса и расположенные на ее внутренней стороне направленные внутрь пластины 7, 7', которые для десублимации продукта предназначены для охлаждения с помощью охлаждающего средства, направляемого через каналы 12 на стенке 10 корпуса, при этом в цилиндрическом корпусе расположен по меньшей мере один внутренний охлаждающий трубопровод, который пронизывает корпус в продольном направлении по всей его длине и который имеет несколько отдельных направленных наружу пластин 8, которые в окружном направлении охлаждающего трубопровода на расстоянии друг от друга распределены по периметру охлаждающего трубопровода, и которые закреплены на охлаждающем трубопроводе с ориентацией в продольном направлении корпуса, причем количество направленных внутрь и/или направленных наружу пластин 7, 7', 8 увеличивается от входного конца корпуса к его выходному концу, а высота Н1, Н2 пластин 7, 8 варьируется между соседними продольными участками L1-L6 с целью предотвращения образования газовых коридоров между свободными концами пластин 7, 8.

Изобретение относится к способам автономного получения чистой пресной воды из воздуха, путем испарения воды и конденсации паровоздушной смеси. Осуществляют формирование потока паровоздушной смеси и осаждение водяных паров в конденсаторах с отбором пресной воды.

Изобретение относится к способу обработки газовой смеси с помощью методики разделения. Способ обработки газовой смеси, которая образуется из потока продукта реактора для синтеза диметилового эфира из синтез-газа и которая содержит диметиловый эфир, диоксид углерода и другой компонент, который является более низкокипящим, чем диоксид углерода, включает охлаждение газовой смеси при первом уровне давления от первого уровня температуры до второго уровня температуры и промывание фракции газовой смеси, которая остается в газообразном состоянии при втором уровне температуры, в поглотительной колонне флегмой, преимущественно содержащей диоксид углерода, при этом флегма частично образована из фракции газовой смеси, которую отделяют в жидком состоянии в процессе охлаждения.

Изобретение относится к технологии неорганических веществ и может быть использовано при проведении синтеза фторсодержащих хладагентов, в производстве гексафторида урана.

Изобретение относится к устройствам для получения пресной воды из водяных паров, содержащихся в окружающем атмосферном воздухе, и может быть использовано для получения пресной воды преимущественно в прибрежной с морями местности.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Предложена конденсаторно-испарительная труба, во внутренней части которой протекает пар, подлежащий конденсации, и через которую протекает жидкость, подлежащая выпариванию, причем и внутренняя, и наружная поверхности этой трубы покрыты капиллярными структурами, выполненными с возможностью образования жидких менисков, имеющих угол контакта меньше 90°, причем граница раздела жидкость-пар изогнута, что позволяет обеспечить капиллярную конденсацию внутри трубы и испарение на наружной поверхности на верхнем конце (25) менисков жидкости, где слой жидкости является самым тонким, а испарение наиболее эффективным.

Изобретение относится к оборудованию для пылеулавливания. Установка для очистки воздуха содержит увлажнитель всасываемого воздуха, компрессор, увлажнитель сжатого воздуха, подогреватель, разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, соединенные последовательно между собой.

Изобретение относится к процессам пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, причем тракт конденсационной камеры выполнен с отношением длины к высоте более 20.

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности, в пищевой промышленности.

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения содержит нижнее днище, верхнее днище, холодную и горячую боковые стенки с устройствами обеспечения разности температур их наружных поверхностей.

Изобретение относится к оборудованию для пылеулавливания. Разнотемпературная конденсационная камера с газовым трактом преимущественно прямоугольного сечения, содержащая нижнее днище, верхнее днище, холодную и горячую боковые стенки тракта с устройствами обеспечения разности температур их наружных поверхностей, при этом верхнее и нижнее днища соединены между собой по периферийной части при помощи боковых стенок с образованием замкнутой полости, в стенках которой выполнены разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений, боковые стенки тракта выполнены состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта, при этом тракт образован верхним, нижним днищами и боковыми стенками тракта, отличающаяся тем, что в центральной части камеры установлено ребро, при помощи которого полость камеры разделена на две части, причем указанное ребро выполнено с возможностью сообщения частей полости камеры между собой, при этом указанное ребро установлено вдоль продольной оси камеры, преимущественно, параллельно ей, со смещением в сторону горячей боковой стенки тракта от продольной оси на расстояние x=(0,1…0,3)X, где x - расстояние смещения ребра в сторону горячей боковой стенки, X - ширина канала.

Изобретение относится к процессам пылеулавливания. Способ очистки воздуха заключается в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, противоположные соседние стенки которого имеют разную температуру, с последующим отделением из потока твердой и конденсированной фаз.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.
Наверх