Способ нанесения токоподводящих шинок на токопроводящую поверхность полимерного стекла

Изобретение относится к области гальванотехники и может быть использовано для нанесения токоподводящих шинок на электропроводящие покрытия полимерных стекол, используемых при изготовлении электрообогреваемых композиций для авиации, наземного и водного транспорта, архитектурного остекления. Способ включает очистку стекла, нанесение адгезионного слоя металла на его токопроводящую поверхность и последующее нанесение на него проводящего слоя, при этом на токопроводящей поверхности стекла на участке нанесения шинки размещают ванну с электропроводящим раствором и закрепленным в ней медным электродом, проводят герметизацию стыка ванны с поверхностью стекла, подают на медный электрод напряжение и наносят адгезионный слой меди методом гальванического осаждения, на который присоединяют ленту из токопроводящего материала. Технический результат: обеспечение надежной и эффективной эксплуатации систем электрообогрева изделий остекления транспортных средств в необходимых режимах, изготовленных из полимерных материалов, в частности из монолитного поликарбоната и полиметилметакрилата. 2 з.п. ф-лы, 1 пр.

 

Изобретение относится к технике нанесения токоподводящих шинок на электропроводящие покрытия полимерных стекол, используемых при изготовлении электрообогреваемых композиций остекления для авиации, наземного и водного транспорта, архитектурного остекления.

Для подачи электропитания на прозрачные электронагревательные элементы (покрытия) используют токоподводы в виде токоподводящих шин. В их состав входят металлы с низким электросопротивлением - серебро, медь, алюминий и др. Состав, геометрические размеры и технология изготовления токоподводящих шин определяются конструкцией и технологией изготовления электрообогреваемого стекла, его электротехническими характеристиками. Основные требования к токоподводам - надежный адгезионный и электрический контакт с токопроводящим покрытием, низкое сопротивление, минимальное снижение оптических и прочностных характеристик стеклоизделия при их нанесении, возможность нанесения шин любой конфигурации как на плоские, так и на криволинейные стекла.

Тенденция создания сверхлегких и прочных электрообогреваемых стекол для авиационного остекления предусматривает использование полимерных (метилметакрилатных, поликарбонатных) стекол. В этом случае, применение существующих конструкций и технологий изготовления токоподводящих шин для силикатных стекол не обеспечивает требуемых значений их прочности (происходит термическое или механическое разупрочнение стекол).

Для органических прозрачных материалов, имеющих температуру размягчения не более 100-150°С, токоподводящие шины изготавливают несколькими способами.

Нанесением на поверхность стекла смеси серебра с полимерными термоотверждаемыми клеями с последующим их запеканием. В этом случае сопротивление шин значительно выше, а адгезионный и электрический контакт ниже, что снижает ресурс и надежность электрообогреваемого стекла, особенно при больших токовых нагрузках и удельных мощностях нагрева. То есть, для органических стекол, с учетом высокого уровня удельных мощностей электронагревательных элементов (0,2-0,7 вт/см2), клеевые составы шин с применением серебра ненадежны.

Метод нанесения силикатно-серебрянных шинок шелкографическим методом предполагает использование дорогостоящего оборудования (специальных струйных принтеров). Для решения указанной задачи требуется разработка новых конструкций токоподводящих шин и технологий их изготовления, обеспечивающих выполнение основных технических требований.

Известен способ формирования токоведущей шины на низкоэмиссионной поверхности стекла методом холодного газодинамического напыления с помощью напыляющего сопла устройства для газодинамического напыления, в котором напыляющее сопло реверсно перемещают по необходимой траектории напыления, при этом через сопло под воздействием сжатого воздуха подается первоначально 2-х компонентный мелкодисперсный порошок Al+Zn, а затем порошок меди (патент РФ №2588921, МПК С23С 4/12, публикация 20.07.2016 г.).

Данный способ предусматривает принудительное внедрение частиц порошка под высоким давлением сжатого воздуха в стеклянную подложку. Он может быть использован только для нанесения шинок на силикатное стекло. Для нанесения токоподводящих шинок на органическое стекло или стекло из поликарбоната он не приемлем. Это обусловлено тем, что полимерные материалы по своей структуре менее плотные (мягкие) по сравнению с силикатным стеклом. Поэтому в процессе попадания частиц порошка на материал подложки не происходит их взаимодиффузия (склепывание частиц), так как последующая частица порошка, соударяясь с первоначальной частицей, уже внедренной в тело подложки, заглубляет ее еще глубже, не связываясь (не склепываясь) с ней, что не происходит в случае силикатного стекла. То есть структура шинки получается рыхлой (не плотной), что не обеспечивает ее работоспособность. Кроме того, при этом способе нанесения происходит разрушение (разрыв) токополя на которое наноситься шинка.

Наиболее близким к изобретению является способ нанесения токоподводящих шинок на прозрачную или непрозрачную подложку из таких материалов, как стекло, пластик и керамика (патент № WO 1591/018757, МПК С03С 17/09). Способ включает в себя очистку подложки, размещение ее в вакуумной камере, напыление из паровой фазы связующего (адгезионного) слоя из металлов хрома, вольфрама, титана, молибдена, никеля, тантала, нержавеющей стали, циркония, гафния, алюминия или сплава из этих металлов и последующего напыления из паровой фазы проводящего слоя, состоящего в основном из меди, серебра, золота, алюминия или смесей и сплавов этих металлов. Способ включает также дополнительное напыление на проводящий слой защитного слоя из металлов хрома, вольфрама, титана, молибдена, никеля, тантала, нержавеющей стали, циркония, гафния, алюминия или сплава из этих металлов.

Данный способ получения токоподводящих шинок путем осаждения в вакууме металла из паровой фазы позволяет получать шинки с тонким поперечным сечением, которые могут использоваться лишь в слаботочных системах обогрева стекол. В высокоточных системах обогрева, использующихся в авиационном, железнодорожном и других транспортных средствах, такие шинки, в силу высоких токов, малого поперечного сечения и образующегося при этом высокого напряжения, будут перегорать.

Кроме того, использование для нанесения шинок вакуумной техники предполагает высокие трудозатраты и высокую стоимость данной технологической операции.

Задачей предлагаемого изобретения является обеспечение надежной и эффективной эксплуатации систем электрообогрева изделий остекления транспортных средств, изготовленных из полимерных материалов, в частности из монолитного поликарбоната и полиметилметакрилата.

Для достижения задачи изобретения предложен:

1. Способ нанесения токоподводящих шинок на токопроводящую поверхность полимерного стекла, включающий очистку стекла, нанесение адгезионного слоя металла на его токопроводящую поверхность и последующего напыления на него проводящего слоя, отличающийся тем, что на токопроводящей поверхности стекла на участке нанесения шинки размещают ванну с электропроводящим раствором и закрепленным в ней медным электродом, проводят герметизацию стыка ванны с поверхностью стекла, подают на медный электрод напряжение и наносят адгезионный слой меди методом гальванического осаждения, на который присоединяют ленту из токопроводящего материала.

2. Способ по п. 1, отличающийся тем, что в качестве электропроводящего раствора используется медный купорос.

3. Способ по п.п. 1-2, отличающийся тем, что лента из токопроводящего материала выполнена из меди, серебра, алюминия.

Метод нанесения токоподводящих шинок на токопроводящую поверхность полимерного стекла гальваническим способом является наиболее предпочтительным по качеству контакта между токопроводящим материалом подложки и адгезионным слоем меди. Это обусловлено тем, что процесс гальванического осаждения предполагает диффузию ионов с материала анода на материал катода. В нашем случае, с медного электрода на токопроводящую поверхность стекла материалом которой, как правило, является оксид олова.

Медный купорос (водный раствор сернистой меди) является дешевым электролитом, содержащим медь. Присоединение ленты медной фольги, например, с помощью серебросодержащей пасты, обеспечивает хорошую электропроводность шинки. При этом толщину фольги в конструкции системы электрообогрева для различных изделий можно менять в зависимости от величины подаваемого напряжения.

Таким образом, изготовленные по данному способу токоподводящие шинки, в полной мере обеспечивают надежную эксплуатацию систем электрообогрева изделий остекления из полимерных материалов при любых электрических нагрузках. Кроме того, ее изготовление относительно простое и не требует больших финансовых затрат.

Предложенный способ осуществляется следующим образом.

Заготовка изделия из полимерного материала, например, поликарбонатного стекла, с нанесенным на ее одну из поверхностей электропроводящим слоем, например, оксидом олова, очищается с помощью профильтрованного сжатого воздуха. Затем на стекло со стороны электропроводящего слоя на участок где предполагается нанести токоподводящую шинку устанавливают ванну, выполненную из материала марки «ВИКСИНТ» с закрепленным в ней электродом, выполненным из меди.

Далее место стыка ванны со стеклом герметизируется путем создания вакуума между дном ванны и стеклом. В ванну подают электролит, содержащий медный купорос. Затем на медный электрод подают напряжение. При этом между медным электродом, выступающим в данном случае в качестве анода и токопроводящей поверхностью стекла, которая выступает в качестве катода, происходит электрохимический процесс осаждения меди из электролита.

По окончании процесса гальванического осаждения ванна разгерметизируется и снимается со стекла. На получившийся медный гальванический слой с помощью серебросодержащей пасты приклеивается лента медной фольги. При этом ширина ленты должна соответствовать ширине медного гальванического слоя, а толщина выбирается в зависимости от необходимых для изделия электрических параметров.

Пример. Была взята заготовка стекла из поликарбоната с нанесенным на одну из ее сторон электропроводящим покрытием (оксидом олова). В «чистом помещении» была проведена ее очистка фильтрованным сжатым воздухом. Стекло уложили на специальный стол вверх стороной с нанесенным электропроводящим покрытием. Ближе к краю изделия, где в соответствии с чертежом должна располагаться токопроводящая шинка, установили ванну.

Ванна выполнена из эластичного материала марки «ВИКСИНТ», устойчивого к агрессивным средам и имеет в донной части, укладывающейся на стекло, пазы. Эластичность материала ванны позволяет укладывать ее на криволинейные поверхности стекол, а наличие пазов позволяет создавать между стеклом и ванной вакуум и, тем самым, герметизировать место стыка ванны и стекла. Кроме того, внутри ванны закреплен медный электрод.

Далее к пазам подсоединили шланги от вакуумного насоса и путем откачки воздуха из пазов ванны произвели герметизацию стыка ванны со стеклом. Затем в ванну подали приготовленный электролит на основе водного раствора сернистой меди (медный купорос). После этого на электрод подали напряжение.

После определенного времени (≈ 10 минут) отключили напряжение и вакуумный насос, слили электролит, сняли ванну с поверхности стекла. На стекле был образован адгезионный гальванический медный слой ориентировочной толщины 0,015 мм и шириной 7 мм. Тестирование на скотч (приклеивание скотча к гальваническом слою и последующий резкий его отрыв) показали хорошую адгезию гальванического слоя к токопроводящей поверхности стекла.

Далее взяли ленту медной фольги толщиной 0,1 мм по длине и ширине равной длине и ширине гальванического слоя. На одну из ее поверхностей нанесли серебросодержащую пасту ПСП и приклеили к гальваническому медному слою. Таким образом была создана электроподводящая шинка.

Электрообогреваемые изделия авиационного остекления на основе монолитного поликарбоната с токоподводящими шинками были испытаны на специальных установках и стендах. Изделия показали достаточно хорошее распределение температур на нагреваемой поверхности и отсутствие местного перегрева в районе расположения шинок, что подтвердилось термограммами. Испытания на цикличность включений и выключений (100 циклов) также показали положительный результат.

Из полученных данных видно, что предлагаемый способ позволяет изготовить токоподводяшие шинки на изделиях из полимерного стекла, обеспечивающими надежную эксплуатацию изделий в необходимых режимах обогрева. Кроме того, предлагаемый способ за счет снижения времени процесса формирования шинок является экономически более эффективным.

1. Способ нанесения токоподводящих шинок на токопроводящую поверхность полимерного стекла, включающий очистку стекла, нанесение адгезионного слоя металла на его токопроводящую поверхность и последующее нанесение на него проводящего слоя, отличающийся тем, что на токопроводящей поверхности стекла на участке нанесения шинки размещают ванну с электропроводящим раствором и закрепленным в ней медным электродом, проводят герметизацию стыка ванны с поверхностью стекла, подают на медный электрод напряжение и наносят адгезионный слой меди методом гальванического осаждения, на который присоединяют ленту из токопроводящего материала.

2. Способ по п. 1, отличающийся тем, что в качестве электропроводящего раствора используют раствор медного купороса.

3. Способ по п. 1 или 2, отличающийся тем, что лента из токопроводящего материала выполнена из меди, серебра, алюминия.



 

Похожие патенты:
Изобретение относится к способу получения компонента с заданным уровнем блеска. Способ включает этапы: подготовка компонента с по меньшей мере одним металлическим слоем, где данный по меньшей мере один металлический слой образует поверхность компонента, получение матово-глянцевой смеси путем смешения глянцевого лака и матового лака в заранее определенном соотношении, нанесение матово-глянцевой смеси на металлическую поверхность компонента, сшивка матово-глянцевой смеси, так что на металлической поверхности компонента оказывается нанесен слой из сшитой смеси глянцевого лака и матового лака.
Изобретение относится к гальванопластике, в частности к электропроводящим термопластичным материалам для изготовления электропроводящих форм. Описан электропроводящий термопластичный материал для гальванопластики, содержащий связующие и электропроводящий наполнитель, где в качестве связующего содержит смесь полиэтиленового воска и парафина в соотношении от 2/1 до 1/3, а в качестве электропроводящего наполнителя графит при следующем соотношении компонентов, мас.ч.: полиэтиленовый воск 10-20, парафин 10-30, графит 60-70.
Изобретение относится к области гальванических технологий и предназначено для металлизации диэлектрических частиц различной природы, степени дисперсности, размеров и геометрической конфигурации путем электролитического осаждения на них металла.
Изобретение относится к области металлургии, а именно к гальванопластике, и может использоваться для нанесения металлических покрытий на материал в виде зернистого порошка или гранул с произвольной плотностью, электропроводностью и физическими размерами.
Изобретение относится к производству покрытий методом электростатического напыления и касается способа окраски диэлектрического материала методом электростатического напыления порошковой краски.

Изобретение относится к способам меднения пластмасс, в частности полимерных композиционных материалов на основе углеродных волокон, и может быть использовано при производстве мебельной фурнитуры, бытовых приборов, предметов быта, в автомобильной и радиотехнической отраслях промышленности.
Изобретение относится к области гальванопластики и применяется при изготовлении художественных изделий. .
Изобретение относится к области гальванотехники и может быть использовано при изготовлении пленок и слоев, в частности в качестве электропроводящего подслоя для последующего электрохимического осаждения.

Изобретение относится к гальваническому производству, а именно к нанесению покрытий на диэлектрические материалы. .

Изобретение относится к области гальванотехники и может быть использовано для нанесения токоподводящих шинок на электропроводящие покрытия полимерных стекол, используемых при изготовлении электрообогреваемых композиций для авиации, наземного и водного транспорта, архитектурного остекления. Способ включает очистку стекла, нанесение адгезионного слоя металла на его токопроводящую поверхность и последующее нанесение на него проводящего слоя, при этом на токопроводящей поверхности стекла на участке нанесения шинки размещают ванну с электропроводящим раствором и закрепленным в ней медным электродом, проводят герметизацию стыка ванны с поверхностью стекла, подают на медный электрод напряжение и наносят адгезионный слой меди методом гальванического осаждения, на который присоединяют ленту из токопроводящего материала. Технический результат: обеспечение надежной и эффективной эксплуатации систем электрообогрева изделий остекления транспортных средств в необходимых режимах, изготовленных из полимерных материалов, в частности из монолитного поликарбоната и полиметилметакрилата. 2 з.п. ф-лы, 1 пр.

Наверх