Способ лазерного послойного синтеза объемных изделий из порошков



Способ лазерного послойного синтеза объемных изделий из порошков
Способ лазерного послойного синтеза объемных изделий из порошков
B33Y10/00 -
B33Y10/00 -
B33Y10/00 -
B33Y10/00 -

Владельцы патента RU 2688098:

Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU)

Изобретение относится к способу лазерного послойного синтеза объемных изделий из порошков и может быть использовано в авиационной и ракетной технике. Способ включает создание с помощью системы трехмерного геометрического моделирования виртуальной модели изготавливаемого объемного изделия. Разбивку виртуальной модели на тонкие поперечные слои. Лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев порошка. При этом толщину hсп поперечного слоя порошка определяют с учетом толщины hyc усадки поперечного слоя порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД, где ПД - поле допуска на номинальный профиль поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала. Образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала. Технический результат заключается в повышении производительности лазерного послойного синтеза объемных изделий из порошков. 2 ил.

 

Изобретение относится к области порошковой металлургии, в частности к производству изделий спеканием или сплавлением металлических или керамических порошков, а именно к технологии лазерного послойного синтеза объемных изделий из порошков, и может быть использовано в авиационной и ракетной технике.

Известен «Способ спекания при лазерном послойном порошковом синтезе объемных деталей» по патенту РФ на изобретение №2423203, включающий дозированную послойную подачу порошка на рабочий стол, выравнивание слоя порошка, удаление избыточного количества порошка и спекание лучом лазера, при этом дозированную подачу порошка осуществляют с обеспечением формирования слоя заданной толщины, выравнивание слоя порошка осуществляют с помощью регулируемого по высоте ножа, после чего проводят уплотнение валиком в режиме свободного качения.

Недостатком известного способа по патенту РФ на изобретение №2423203 является низкая производительность процесса спекания, так как при лазерном послойном порошковом синтезе объемной детали происходит усадка слоя из-за его пористости (поры между частицами порошка) и фактическая толщина слоя сформированного материала будет меньше начальной толщины слоя порошка уплотненного валиком. Для компенсации усадки необходимо формировать дополнительные слои материала.

Известен «Способ лазерно-компьютерного макетирования» по патенту РФ на изобретение №2262741, принятый в качестве ближайшего аналога, включающий создание с помощью системы трехмерного геометрического моделирования виртуальной объемной модели будущего изделия, ее разбивку на тонкие поперечные слои и послойный синтез твердой модели, при этом толщину А поперечных слоев выбирают из условия, при котором А≤ПД, где ПД - поле допуска на номинальный профиль поверхности модели, а образующая профиля поверхности модели проходит через среднюю линию поперечных слоев.

Недостатком известного способа по патенту РФ на изобретение №2262741 является низкая производительность процесса лазерно-компьютерного макетирования, так как при лазерном послойном синтезе твердой модели из поперечных слоев порошка толщиной А происходит усадка слоя из-за пористости (поры между частицами порошка) и фактическая толщина слоя сформированного материала будет меньше начальной толщины А слоя порошка. Для компенсации усадки необходимо формировать дополнительные слои материала.

Перед заявляемым изобретением поставлена задача повышения производительности лазерного послойного синтеза объемных изделий из порошков.

Поставленная задача в заявляемом изобретении решается за счет того, что способ лазерного послойного синтеза объемных изделий из порошков, включающий создание с помощью системы трехмерного геометрического моделирования виртуальной модели будущего объемного изделия, разбивку виртуальной модели на тонкие поперечные слои, лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев порошка, при этом толщину hсп поперечного слоя порошка определяют с учетом толщины hyc усадки поперечного слоя порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД (ПД - поле допуска на номинальный профиль НП поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала), а образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала.

Заявленное изобретение отличается от известного «Способа лазерно-компьютерного макетирования» по патенту РФ на изобретение №2262741 тем, что толщину hсп поперечного слоя порошка определяют с учетом толщины hyc усадки поперечного слоя порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД (ПД - поле допуска на номинальный профиль НП поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала), а образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала.

Указанное отличие позволило получить технический результат, а именно, обеспечило повышение производительности лазерного послойного синтеза объемных изделий из порошков.

На фиг. 1 представлена схема формирования поперечного слоя материала толщиной hсм из поперечного слоя порошка толщиной hсп при определенной толщине hyc усадки поперечного слоя.

На фиг. 2. представлена схема изделия, состоящего из поперечных слоев материала толщиной hсм.

Способ лазерного послойного синтеза объемных изделий из порошков (фиг. 1, 2) включает создание с помощью системы трехмерного геометрического моделирования виртуальной модели будущего объемного изделия 1, разбивку виртуальной модели на тонкие поперечные слои 2, лазерный послойный синтез объемного изделия 1 спеканием или сплавлением поперечных слоев 3 порошка, при этом толщину hсп поперечного слоя 3 порошка определяют с учетом толщины hyc усадки 4 поперечного слоя 3 порошка при спекании или сплавлении из условия hсм=(hсп-hус)≤ПД (ПД - поле допуска на номинальный профиль 5 поверхности 6 объемного изделия 1; hсм - толщина поперечного слоя 7 сформированного материала), а образующая 8 реального профиля 9 поверхности 6 объемного изделия 1 проходит через среднюю линию 10 поперечного слоя 7 сформированного материала.

Работу по предлагаемому способу осуществляют следующим образом (фиг. 1, 2). С помощью системы трехмерного геометрического моделирования создают виртуальную модель будущего объемного изделия 1. Затем разбивают виртуальную модель на тонкие поперечные слои 2. После чего приступают к лазерному послойному синтезу объемного изделия 1 на платформе 11. На платформу 11 наносят первый поперечный слой 3 порошка толщиной hсп. В соответствии с конфигурацией и размерами виртуальной модели в тонком поперечном слое 2 луч лазера обводит контур объемного изделия 1 по поперечному слою 3 порошка, а затем сканирует поперечный слой 3 порошка внутри этого контура. В результате теплового воздействия лазерного излучения из частиц порошка сплавлением или спеканием формируют поперечный слой 7 материала толщиной hсм, соответствующий тонкому поперечному слою 2 виртуальной модели. Далее на сформированный поперечный слой 7 материала наносят поперечный слой 3 порошка толщиной hсп, проводят его обработку лазерным лучом в соответствии с конфигурацией и размерами виртуальной модели в следующем тонком поперечном слое 2, и формируют следующий поперечный слой 7 материала объемного изделия 1. Таким образом, из поперечных слоев 7 материала толщиной hсм послойно формируют объемное изделие 1 в соответствии с конфигурацией и размерами виртуальной модели.

Для обеспечения высокой точности размеров толщину hсм поперечных слоев 7 материала устанавливают из условия hсм≤ПД, где ПД - поле допуска на номинальный профиль 5 поверхности 6 объемного изделия 1. При этом образующая 8 реального профиля 9 поверхности 6 объемного изделия 1 проходит через среднюю линию 10 поперечного слоя 7 сформированного материала.

При формировании каждого поперечного слоя 7 материала толщиной hсм из поперечного слоя 3 порошка толщиной hсп из-за пористости (поры между частицами порошка) происходит его усадка 4 на толщину hyc. Для конкретного порошка толщину hyc усадки 4 определяют экспериментально. Для повышения производительности лазерного послойного синтеза объемных изделий из порошков при нанесении поперечного слоя 3 порошка компенсируют толщину hyc усадки 4, прибавляя ее к толщине hсм поперечного слоя 7 материала, то есть наносимый поперечный слой 3 порошка имеет толщину hсп=(hсм+hyc). Таким образом, поперечный слой 7 материала после спекания или сплавления имеет толщину hсм=(hсп-hyc).

Учет толщины hyc усадки 4 поперечного слоя 3 порошка при послойном лазерном синтезе уменьшает количество тонких поперечных слоев 2, что повышает производительность процесса при обеспечении такой же высокой точности размеров объемного изделия 1.

Изобретение позволило получить технический результат, а именно, обеспечило повышение производительности лазерного послойного синтеза объемных изделий из порошков.

Способ лазерного послойного синтеза объемных изделий из порошков, включающий создание с помощью системы трехмерного геометрического моделирования виртуальной модели объемного изделия, разбивку виртуальной модели на тонкие поперечные слои и лазерный послойный синтез объемного изделия спеканием или сплавлением поперечных слоев порошка, отличающийся тем, что толщину hсп поперечного слоя порошка определяют с учетом толщины hус усадки поперечного слоя порошка при спекании или сплавлении из следующего условия hсм=(hсп-hус)≤ПД , где ПД - поле допуска на номинальный профиль поверхности объемного изделия; hсм - толщина поперечного слоя сформированного материала, при этом образующая профиля поверхности объемного изделия проходит через среднюю линию поперечного слоя сформированного материала.



 

Похожие патенты:

Изобретение относится к средствам визуализации изображения по данным (6) трехмерного лазерного сканирования. Технический результат заключается в повышении точности визуализации.

Изобретение относится к Интернет-технологиям. Технический результат направлен на расширение арсенала средств.

Настоящее изобретение относится к картриджу для тонера для использования в устройствах для электрофотографического формирования изображений. Заявленный картридж с тонером для применения в устройстве формирования изображений содержит корпус, имеющий верхнюю сторону, нижнюю сторону, переднюю сторону и заднюю сторону, расположенные между первой боковой стороной и второй боковой стороной корпуса, при этом корпус определяет резервуар для хранения тонера, выпускной порт, сообщающийся по текучей среде с резервуаром и обращенный вниз на передней стороне корпуса рядом с первой боковой стороной, затвор, расположенный на выпускном порте и выполненный с возможностью перемещения между открытым положением, позволяющим тонеру выходить из выпускного порта, и закрытым положением, препятствующим выходу тонера из выпускного порта, систему подачи тонера для транспортировки тонера из резервуара через выпускной порт, содержащую главную шестерню интерфейса для передачи вращения на систему подачи тонера, при этом часть главной шестерни интерфейса обнажена на передней стороне корпуса рядом с вершиной второй боковой стороны и выполнена с возможностью зацепления с ответной приводной шестерней в устройстве для формирования изображений, обращенное назад отверстие, расположенное рядом с первой боковой стороной корпуса для приема первого взаимодействующего элемента в устройстве формирования изображений для открывания и закрывания затвора, и обращенный вперед паз, расположенный рядом с первой боковой стороной корпуса для приема второго взаимодействующего элемента для запирания и отпирания затвора.

Изобретение относится к средствам контурной обработки целевых структур в рентгенографии. .

Изобретение относится к системам отображения совокупности данных измерений вдоль траектории ствола скважины. .

Изобретение относится к способу и устройству для создания трехмерных изображений из последовательности двумерных изображений. .

Изобретение относится к технологии послойного формообразования в составе систем ускоренного прототипирования на базе лазерно-компьютерного макетирования. .

Изобретение относится к технологии послойного формообразования в составе систем ускоренного прототипирования на базе лазерно-компьютерного макетирования. .

Изобретение относится к компьютерному проектированию и компьютерному дизайну, и в частности к системе и способу улучшенного параметрического геометрического моделирования.

Изобретение относится к области вычислительной техники. Технический результат – обеспечение улучшенной визуализации высотных отметок рельефа горной разработки.

Изобретение относится к области обработки изображения. Технический результат – обеспечение визуализации внутренней структуры исследуемого объекта в реальном времени.

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты.

Изобретение относится к области обработки геопространственной информации и может быть использовано для создания трехмерных цифровых моделей объектов и территорий.

Настоящее изобретение относится к области компьютерной графики. Технический результат – повышение производительности процесса отрисовки трехмерной сцены.

Изобретение относится к области управления элементами графического пользовательского интерфейса. Технический результат – расширение арсенала технических средств в части управления элементами графического пользовательского интерфейса.

Изобретение относится к области вычислительной техники, а более конкретно к отображению лица объекта на объемный трехмерный дисплей. Технический результат – повышение точности отображения трехмерного лица объекта на трехмерное устройство отображения.

Изобретение относится к области цифрового картографирования и может быть использовано для построения цифровых моделей карт характеристик поверхностного снега.

Изобретение относится к области рендеринга двумерных изображений из трехмерных моделей. Технический результат – уменьшение требований к обработке шейдинга видимых примитивов при рендеринге 2D изображения экрана из 3D модели путем шейдинга пикселей при одновременной минимизации визуальных артефактов.

Изобретение относится к области геофизики и может быть использовано для автоматического получения тектонического строения из данных потенциального поля. Способ включает предварительную обработку данных гравитационного потенциального поля и/или данных магнитного потенциального поля из зоны, подлежащей исследованию, многоуровневое и многонаправленное обнаружение краев в отношении предварительно обработанных данных гравитационного потенциального поля и/или данных магнитного потенциального поля и получение краев на всех уровнях по отдельности, утончение вычисленного края каждого уровня до однопиксельной ширины посредством алгоритма определения морфологического скелета.

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два.
Наверх