Способ гидроочистки бензина каталитического крекинга

Изобретение относится к области нефтепереработки. Изобретение касается способа гидроочистки бензина каталитического крекинга, выкипающего в интервале от 0 до 235°С, содержащего до 0,1% серы, имеющего октановое число по исследовательскому методу до 95, заключающийся в пропускании смеси бензина каталитического крекинга и водорода через реактор при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м33, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Al2O3 - остальное. Технический результат - получение продукта гидроочистки бензина каталитического крекинга - компонента товарного бензина - с содержанием серы не более 10 ppm при снижении октанового числа бензина каталитического крекинга не более чем на 1,5 пункта по исследовательскому методу. 4 з.п. ф-лы, 4 пр., 1 табл.

 

Изобретение относится к способам селективной гидроочистки бензина каталитического крекинга (БКК) с получением продукта - компонента товарного бензина - с низким содержанием серы при минимальном снижении октанового числа и может быть использовано в нефтеперерабатывающей промышленности.

В настоящее время в России доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet, Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снизить содержание серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

При проведении гидроочистки БКК наряду с удалением из бензина серосодержащих соединений протекает также гидрирование олефинов, приводящее к снижению октанового числа БКК. Поэтому актуальной задачей является разработка процессов гидроочистки БКК, позволяющих снизить содержание серы в БКК при минимальном снижении октанового числа.

Известны различные варианты проведения процесса гидроочистки БКК. Используется разделение БКК на легкую и тяжелую фракции, с последующей гидроочисткой тяжелой фракции и смешением легкой фракции с продуктом гидроочистки тяжелой фракции. Возможны также варианты, при которых легкая фракция подвергается дополнительной демеркаптанизации.

Известен способ гидроочистки БКК [Патент РФ №2242501, C10G 45/08, 05.09.2003], заключающийся в разделении БКК на фракции н.к. - 130-160°С и 130-160°С - к.к. с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки тяжелой фракции проводят при температуре 200-320°С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего 8-19% МоО3 и 2-6% СоО и/или NiO, остальное - Al2O3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°С и конечной прокалкой при 400-650°С. Недостатком такого способа гидроочистки БКК является высокое содержание серы в продукте.

Известен способ, в соответствии с которым тяжелую нестабильную бензиновую фракцию каталитического крекинга подвергают гидрообессериванию с последующим возвратом ее после гидрообессеривания в ректификационную колонну установки каталитического крекинга и стабилизации ее совместно с негидроочищенной легкой бензиновой фракцией. Изобретение решает задачу снижения содержания серы в бензинах, получаемых в процессе каталитического крекинга, без уменьшения их октановых чисел и снижения содержания в них олефиновых углеводородов. Недостатком такого способа гидроочистки БКК также является высокое содержание серы в продукте [Пат. РФ №2134287, C10G 55/06, 10.08.1999].

Известен способ селективной очистки бензиновых фракций каталитического крекинга [Патент РФ №2372380, C10G 45/06, C10G 65/04, 29.07.2008] путем их ступенчатого гидрооблагораживания в присутствии алюмооксидных катализаторов в среде водорода при повышенных давлении и температуре с разделением продукта первой ступени на легкую и тяжелую фракции, с последующим гидрооблагораживанием тяжелой фракции на второй ступени при температуре 280-340°С, давлении 2-3 МПа, объемной скорости подачи сырья 4-8 час-1 и смешением полученного продукта после второй ступени гидрооблагораживания с легкой фракцией продукта первой ступени с получением очищенного продукта. Разделение продукта первой ступени или разделение исходного бензина на легкую и тяжелую фракции проводят по температуре 70-90°С при переработке сырья с содержанием серы выше 0,16 мас. %, 90-120°С - при переработке сырья с содержанием серы 0,005-0,16 мас. %. Заявленный способ позволяет уменьшить содержание серы до уровня не более 0,001 мас. % в бензиновой фракции при минимальном снижении содержания олефиновых углеводородов.

Общим недостатком способов обессеривания БКК, основанных на разделении бензина на легкую и тяжелую фракцию, является существенное усложнение технологической схемы процесса обессеривания БКК, а также высокое содержание серы в продукте в том случае, если легкая фракция не подвергается процессу демеркаптанизации или гидрообессеривания.

Другим вариантом гидроочистки БКК является проведении процесса гидроочистки БКК в присутствии катализаторов, обладающих повышенной селективностью, выражающейся в пониженной степени гидрирования олефиновых углеводородов при заданной глубине обессеривания. Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить модифицирующие добавки, такие как оксид магния и других элементов.

Известен процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния [Пат. США №4140626, C10G 23/02, 20.02.1979].

В патенте [США №5348928, B01J 21/04; B01J 23/78; B01J 23/88; B01J 37/04] гидроочистка БКК производится в присутствии катализатора, содержащего в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя от 0,5 до 50 вес. % магния и от 0,02 до 10 вес. % щелочного металла. Недостатком данного способа гидроочистки БКК, а также других способов, основанных на использовании катализаторов с повышенной селективностью, является высокое содержание серы в продукте гидроочистки.

Общим недостатком указанных катализаторов является высокое остаточное содержание серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является способ, описанный в [Пат. РФ №2575639, B01J 29/076, B01J 23/882, C10G 45/08, 12.01.2015]. Процесс гидроочистки БКК проводят при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м33, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: МоО3 - 3,0-12,0; СоО - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 1,0 - 3,9-86,6%; Al2O3 - остальное; имеющего удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющего собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Недостатком данного способа гидроочистки БКК, а также других способов, основанных на использовании катализаторов с повышенной селективностью, является высокое содержание серы в продукте гидроочистки и значительное снижение октанового числа бензина при гидроочистке при условиях, при которых достигается остаточное содержание серы не более 10 ppm.

Предлагаемое изобретение решает задачу создания улучшенного способа гидроочистки широкой бензиновой фракции каталитического крекинга.

Технический результат - получение продукта гидроочистки бензина каталитического крекинга - компонента товарного бензина - с содержанием серы не более 10 ppm при снижении октанового числа бензина каталитического крекинга не более чем на 1,5 пункта по исследовательскому методу.

Задача решается проведением процесса гидроочистки бензина каталитического крекинга, выкипающего в интервале от 0 до 235°С, содержащего до 0,1% серы, имеющего октановое число по исследовательскому методу до 95, при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м33, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Al2O3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3. Катализатор имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Основным отличительным признаком предлагаемого способа гидроочистки БКК по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м33, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Al2O3 - остальное. Выход содержания компонентов за заявляемые границы приводит к увеличению содержания серы или снижению октанового числа получаемого бензина.

Вторым существенным отличительным признаком предлагаемого способа гидроочистки является то, что катализатор содержит аморфный алюмосиликат с массовым отношением Si/Al от 0,2 до 0,3. Использование аморфного алюмосиликата с соотношением Si/Al, выходящим за границы указанного диапазона, также приводит к увеличению содержания серы или снижению октанового числа получаемого бензина.

Третьим существенным отличительным признаком предлагаемого способа гидроочистки является то, что в качестве сырья используют бензины каталитического крекинга, выкипающие в интервале от 0 до 210°С, содержащие до 0,1% серы, имеющие октановое число по исследовательскому методу до 95.

Технический результат предлагаемого способа гидроочистки БКК складывается из следующих составляющих:

1. Проведение процесса гидроочистки в присутствии катализатора, имеющего оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки бензина БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат с массовым отношением Si/Al от 0,2 до 0,3 и борат алюминия Al3BO6 со структурой норбергита в составе катализатора позволяют увеличить селективность катализатора в гидроочистке БКК и снизить величину падения октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата и бората алюминия способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а, с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

3. Условия проведения процесса гидроочистки БКК, обеспечивающие достижение низкого содержания серы в продукте гидроочистки при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

4. Возможность получения малосернистого бензина из сырья широкого фракционного состава с содержанием серы до 0,1%.

Описание предлагаемого технического решения.

Гидроочистку бензина каталитического крекинга, выкипающего в интервале от 0 до 235°С, содержащего до 0,1% серы, имеющего октановое число по исследовательскому методу до 95, проводят при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 150-350 м33, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Al2O3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3. Катализатор имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Сущность изобретения иллюстрируется следующими примерами и таблицей:

Пример 1. (Согласно известному техническому решению)

В лабораторный смеситель помещают 30 г порошка гидрооксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас. %, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трехлистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°С. Затем экструдаты прокаливают в муфельной печи при температуре 550°С в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°С и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°С в течение 4 ч, затем прокаливают при температуре 550°С в течение 3 ч в токе воздуха. Полученный катализатор имеет следующий состав, мас. %: Мо - 3,7%; Со - 0,85%; аморфный алюмосиликат - 66,5%; Al2O3 - остальное.

Гидроочистку бензинов каталитического крекинга проводят в проточном реакторе в следующих условиях: объемная скорость подачи сырья - 2 ч-1, соотношение H2/сырье - 350 нл/нл, давление - 1,7 МПа. Стартовая температура гидроочистки 230°С, после чего температуру поднимали ступеньками по 2-3°С до достижения остаточного содержания серы в продуктах гидроочистки 10 ppm. Эта температура, являющаяся показателем активности катализатора, фиксировалась в таблице.

Используют два варианта сырья гидроочистки:

Сырье 1 со средним содержанием серы - широкая фракция БКК с интервалом кипения н.к. - 220°С, содержанием серы 224 ppm, азота 50 ppm, малеиновым числом 0,7, октановым числом по исследовательскому методу 90,9 и по моторному методу 79,9.

Сырье 2 с высоким содержанием серы - тяжелая фракция БКК с интервалом кипения 60-235°С, содержанием серы 1000 ppm, азота 100 ppm, малеиновым числом 1,0, октановым числом по исследовательскому методу 88,9 и по моторному методу 79,0.

Перед каталитическими испытаниями катализатор может быть сульфидирован по известным методикам. Результаты гидроочистки приведены в таблице.

Примеры 2-4 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят борсодержащий порошок гидроксида алюминия, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки.

Затем готовят носитель. Смешение проводят в лабораторном смесителе с Z-образными лопастями. Отмеренные 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, загружают в емкость смесителя. Отмеренные 100 г порошка аморфного алюмосиликата с соотношением Si/Al=0,3, имеющего потери при прокаливании при 550°С 24,5%, загружают в емкость смесителя. Порошки перемешивают 15 мин.

К отмеренным в стеклянном стакане 180 мл дистиллированной воды добавляют 9 г лимонной кислоты, раствор перемешивают до полного растворения лимонной кислоты. Приготовленный раствор приливают к смеси борсодержащего алюминия гидроксида и аморфного алюмосиликата, и перемешивают до получения пластичной формовочной массы. Время перемешивания в среднем составляет 30 мин.

Готовую массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде трилистника диаметром 1,3 мм.

Полученный носитель сушат при температуре 120°С и прокаливают при температуре 550°С. Далее носитель измельчают по длине до частиц требуемого размера.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 60 мл дистиллированной воды при перемешивании последовательно растворяют 9,8 г лимонной кислоты C6H8O7; 9,0 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 3,0 г кобальта(II) основного карбоната СоСО3⋅mCo(ОН)2⋅nH2O. Далее, добавлением дистиллированной воды объем раствора доводят до 90 мл.

90 г полученного носителя в течение 20 мин при 20°С пропитывают по влагоемкости 90 мл раствора, содержащего 19,2 г биметаллического соединения состава [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2]. Катализатор сушат на воздухе при 100°С 4 ч.

В результате получен катализатор, содержащий, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,02; аморфный алюмосиликат 50; γ-Al2O3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении 0,3. Катализатор имеет удельную поверхность 280 м2/г, объем пор 0,9 см3/г, средний диаметр пор 9 нм, представляет собой частицы с сечением в форме трилистника с диаметром 1,3 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471 - 1,0 МПа.

Гидроочистку бензина каталитического крекинга проводят аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 3.

Порошок борсодержащего гидроксида алюминия готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 5,98 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4.

Операции по приготовлению носителя идентичны примеру 2, с той разницей, что в лабораторный смеситель с Z-образными лопастями к отмеренным 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, добавляют 80 г порошка аморфного алюмосиликата с соотношением Si/Al=0,2, имеющего потери при прокаливании при 550°С 25,5%, загружают в емкость смесителя. К порошкам добавляют раствор 9 г лимонной кислоты в 180 мл воды. Пасту перемешивают 45 мин, продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде трилистника диаметром 3 мм, гранулы сушат при 100°С и прокаливают при 650°С.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 60 мл дистиллированной воды при перемешивании последовательно растворяют 11,48 г лимонной кислоты C6H8O7; 11,96 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 4,0 г кобальта(II) основного карбоната СоСО3⋅mCo(ОН)2⋅nH2O. Далее, добавлением дистиллированной воды объем раствора доводят до 90 мл.

100 г полученного носителя в течение 40 мин при 50°С пропитывают по влагоемкости 90 мл раствора, содержащего 25,5 г биметаллического соединения состава [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2]. Катализатор сушат на воздухе при 120°С 3 ч.

В результате получают катализатор, содержащий, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 22,5%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - не более 0,02; аморфный алюмосиликат 40; γ-Al2O3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2. Катализатор имеет удельную поверхность 245 м2/г, объем пор 0,8 см3/г, средний диаметр пор 10 нм, представляет собой частицы с сечением в форме трилистника с диаметром 3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471 - 1,3 МПа.

Гидроочистку бензина каталитического крекинга проводят аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 4.

Порошок борсодержащего гидроксида алюминия готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 14,63 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4.

Операции по приготовлению носителя идентичны примеру 2, с той разницей, что в лабораторный смеситель с Z-образными лопастями к отмеренным 100 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, добавляют 60 г порошка аморфного алюмосиликата с соотношением Si/Al=0,25, имеющего потери при прокаливании при 550°С 25%, загружают в емкость смесителя. К порошкам добавляют раствор 9 г лимонной кислоты в 180 мл воды. Пасту перемешивают 45 мин, продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде круга диаметром 3 мм, гранулы сушат при 150°С и прокаливают при 600°С.

Далее в растворе синтезируют биметаллическое соединение, соответствующее формуле [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 50 мл дистиллированной воды при перемешивании последовательно растворяют 14,36 г лимонной кислоты C6H8O7; 14,96 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 5,0 г кобальта(II) основного карбоната СоСО3⋅mCo(ОН)2⋅nH2O. Далее, добавлением дистиллированной воды объем раствора доводят до 80 мл.

100 г полученного носителя в течение 1 ч при 80°С пропитывают по влагоемкости 80 мл раствора, содержащего 31,9 г биметаллического соединения состава [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2]. Катализатор сушат на воздухе при 150°С 2 ч.

В результате получен катализатор, содержащий, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита 25,0; натрий - 0,03; аморфный алюмосиликат 30; γ-Al2O3 - остальное. Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении 0,25. Катализатор имеет удельную поверхность 220 м2/г, объем пор 0,7 см3/г, средний диаметр пор 12 нм, представляет собой частицы с сечением в форме круга с диаметром 3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471 - 1,6 МПа.

Гидроочистку бензина каталитического крекинга проводят аналогично примеру

1. Результаты тестирования приведены в таблице.

Как видно из приведенных примеров, предлагаемый способ гидроочистки бензина каталитического крекинга позволяет получать компоненты товарного бензина с содержанием серы не более 10 ppm при снижении октанового числа бензина каталитического крекинга не более чем на 1,5 пункта по исследовательскому методу.

1. Способ гидроочистки бензина каталитического крекинга в присутствии гетерогенного катализатора, содержащего кобальт, молибден и носитель, отличающийся тем, что процесс гидроочистки проводят в присутствии гетерогенного катализатора, включающего в свой состав кобальт, молибден и носитель, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 17,4-27,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; аморфный алюмосиликат 30-50; γ-Al2O3 - остальное.

2. Способ по п. 1, отличающийся тем, что используемый катализатор имеет удельную поверхность 220-280 м2/г, объем пор 0,7-0,9 см3/г, средний диаметр пор 9-12 нм, представляет собой частицы с сечением в форме трилистника или круга с диаметром 1,3-3,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

3. Способ по п. 1, отличающийся тем, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,2 до 0,3.

4. Способ по п. 1, отличающийся тем, что гидроочистку проводят при температуре 240-320°С, давлении 1,5-3,0 МПа, объемном отношении водород/сырье до 350 м33, объемной скорости подачи сырья 2-10 ч-1.

5. Способ по п. 1, отличающийся тем, что в качестве сырья используют бензины каталитического крекинга, выкипающие в интервале от 0 до 235°С, содержащие до 0,1% серы, имеющие октановое число по исследовательскому методу до 95.



 

Похожие патенты:

Изобретение относится к способам приготовления катализаторов гидроочистки бензина каталитического крекинга и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу получения катализатора гидродеметаллизации, содержащего: подложку из оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET более или равную 100 м2/г, полный объем пор более или равный 0,75 мл/г, среднеобъемный диаметр мезопор от 18 до 26 нм, объем мезопор более или равный 0,65 мл/г, объем макропор от 15 до 40% от полного объема пор; и причем указанный способ включает в себя, по меньшей мере, следующие этапы: a) растворение кислотного предшественника алюминия, b) регулирование значения pH с помощью щелочного предшественника, c) соосаждение кислотного предшественника и щелочного предшественника, причем по меньшей мере один из двух содержит алюминий, чтобы получить суспензию алюмогеля с желаемой концентрацией оксида алюминия, d) фильтрация, e) сушка, чтобы получить порошок, f) формование, g) термообработка, чтобы получить алюмооксидную подложку, h) введение, путем пропитки, активной гидрирующей-дегидрирующей фазы на указанную алюмооксидную подложку.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g).

Изобретение относится к способу получения катализатора гидроконверсии с бимодальной пористой структурой, с полностью смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу из обожженного оксида алюминия, имеющую содержание оксида алюминия более или равное 90% и содержание оксида кремния не более 10% по весу в эквиваленте SiO2 относительно массы матрицы, включающий этапы (а)–(j), раскрытые в п.1 формулы изобретения.

Изобретение относится к мезопористому и макропористому катализатору гидроконверсии с активной фазой, к способу получения такого катализатора, а также к способу гидроочистки тяжелого углеводородного сырья.

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1.

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным слоем пакета катализаторов, состоящим из основного катализатора гидропереработки, в качестве которого используют алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор в сульфидной форме, и расположенных над ним защитных слоев в количестве 10-15% реакционного объема, включающих: слой А - инертный материал для удаления механических примесей, обладающий свободным объемом не менее 65%, слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений на основе высокопористого ячеистого материала, обладающий свободным объемом не менее 80%, размером отверстий не более 30 меш, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 3% масс., молибдена - не более 10% масс., слой В - сорбционно-каталитический материал для удаления мышьяка и кремния на основе мезопористого оксида кремния, обладающий удельной поверхностью не ниже 350 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 6% масс., молибдена - не более 14% масс., слой Г - катализатор деметаллизации на основе гамма-оксида алюминия, обладающий удельной поверхностью не ниже 150 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения кобальта, никеля и молибдена, при этом содержание кобальта составляет не более 4% масс., никеля - не более 4% масс., молибдена - не более 14% масс., при следующем соотношении защитных слоев в частях по объему - А:Б:В:Г - 0,2:0,6÷2,4:1,2÷1,6:0,2÷1,6.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что подложку из оксида алюминия пропитывают раствором, содержащим от 14% вес.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что вначале получают никельсодержащую подложку, сформованную экструзией смеси оксида алюминия и от 0,1 до 5 вес.% порошка никеля, с последующими сушкой и прокаливанием.

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена и основного карбоната никеля или кобальта в цилиндрические гранулы, просушивание и прокаливание с последующей пропиткой водным раствором тиомочевины с концентрацией 42-55 масс.% или водным раствором роданида аммония с концентрацией 42-55 масс.%, термообработку при температуре 250-320°С в токе водорода в течение 30-60 мин, при этом получают катализатор, содержащий, масс.%: сульфид никеля или сульфид кобальта 3,0-8,5, сульфид молибдена 8,9-22, оксид алюминия остальное.

Описаны каталитические композиции крекинга с флюидизированным катализатором (ФКК), способы крекинга. Каталитическая композиция включает первый тип частиц, включающих один или несколько компонентов с оксидом бора, и компонент первой матрицы, где первый тип частиц не включает цеолит, и второй тип частиц, который имеет композицию, отличающуюся от первого типа частиц, второй тип частиц включает компонент второй матрицы, компонент фосфора и 20% - 95 мас.

Настоящее изобретение относится к способу крекинга с флюидизированным катализатором. Описан способ крекинга углеводородного сырья при условиях крекинга с флюидизированным катализатором (ФКК), который включает: добавление одного или нескольких компонентов с оксидом бора на ФКК-совместимых неорганических частицах к крекирующим частицам в установке ФКК; где ФКК-совместимые неорганические частицы представляют собой первый тип частицы, помещенной в установку ФКК, со вторым типом частицы, имеющей композицию, отличающуюся от первого типа частиц; первый тип частицы содержит один или несколько компонентов с оксидом бора и первый матричный компонент; второй тип частицы имеет композицию, отличающуюся от первого типа частиц, и включает второй матричный компонент, и является активным для углеводородного крекинга; первый тип частицы и второй тип частицы смешаны вместе; ФКК-совместимые неорганические частицы содержат матричный материал и нецеолитный материал; один или несколько компонентов с оксидом бора присутствуют в количестве в диапазоне от 0,005 до 20 мас.% ФКК-совместимых неорганических частиц; и крекирующие частицы присутствуют в диапазоне 60-99 мас.% и ФКК-совместимые неорганические частицы присутствуют в диапазоне 1-40 мас.%.

Изобретение относится к получению гидроталькитоподобных соединений и может быть использовано в производстве сорбентов и катализаторов. Способ получения слоистого гидроксида магния и алюминия включает смешение хлорида или нитрата магния или алюминия с карбонатным реагентом, выделение гидратного осадка магния и алюминия, его промывку водой и сушку.

Изобретение относится к способу алкилирования, который может быть использован в химической промышленности. Предложенный способ включает контактирование изопарафинового сырья, имеющего от 4 до 10 атомов углерода, и олефинового сырья, имеющего от 2 до 10 атомов углерода, в присутствии каталитической композиции триалкилфосфониевой ионной жидкости в зоне алкилирования в условиях алкилирования для того, чтобы генерировать алкилат, где каталитическая композиция триалкилфосфониевой ионной жидкости содержит одно или несколько триалкилфосфоний галоидалюминатных соединений, имеющих формулу в которой радикалы R1, R2 и R3 являются одинаковыми или различными и каждый независимо выбирают из C1-C8 гидрокарбила и X выбирают из F, Cl, Br, I или их комбинаций.

Предложен способ приготовления катализатора для гидропереработки нефтяного сырья, включающий смешение основного карбоната никеля, вольфрамовой кислоты и носителя, последующее экструдирование полученной массы, сушку экструдатов и прокаливание.

Изобретение относится к способам приготовления катализаторов гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга.

Изобретение относится к катализатору гидроочистки углеводородного сырья, который содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0%; бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах, - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас.

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, включающему в свой состав соединения молибдена, кобальта, бора и алюминия.

Изобретение относится к способу гидроочистки углеводородного сырья, заключающемуся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, который содержит, мас.

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности.

Настоящее изобретение относится к области гидрообработки углеводородного сырья типа газойля. Описан способ гидрообработки по меньшей мере газойлевой фракции, имеющей средневзвешенную температуру (TMP) в интервале от 240 до 350°C, причем способ осуществляют при температуре в интервале от 250 до 400°C, при общем давлении в интервале от 2 до 10 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 100 до 800 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 1 до 10 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, b) стадию термической обработки суспензии, полученной после стадии a), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов, что обеспечивает получение геля оксида алюминия; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды. Технический результат - разработка способа гидрообработки по меньшей мере газойлевой фракции, в котором применяют катализатор, обладающий улучшенными каталитическими характеристиками, причем указанный способ обеспечивает повышенную гидрообессеривающую активность. 13 з.п. ф-лы, 5 пр., 6 табл.
Наверх