Способ получения нанокомпозиционных микропористых пластиков с армированными порами

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси, содержащей мономер цианат-эфира, углеродные нанотрубки и диспергант с последующим измельчением связующего криомельницей, гриндером или шаровой мельницей с получением порошка, на втором этапе производят термоотверждение порошка в пресс-форме при температуре 120-180°С в течение 3-8 часов. Технический результат – обеспечение устойчивых к охрупчиванию микропористых пластиков на основе цианат-эфира и высоким содержанием углеродных нанотрубок с требуемой диэлектрической проницаемостью и улучшенными физико-механическими свойствами. 1 табл., 2 ил., 3 пр.

 

Изобретение относится к созданию нанокомпозиционных микропористых цианат-эфирных пластиков. Более конкретно изобретение относится к созданию микропористого цианат-эфирного пластика без использования при его создании микросфер, газа или растворителей. Еще более конкретно изобретение относится к созданию микропористого пластика или стеклопластика с армированными микропорами на основе нанокомпозиционного цианат-эфирного связующего для применения в качестве одного из компонентов многослойного радиопоглощающего материала (сэндвич-структуры) или в качестве самостоятельного радиопоглощающего материала или покрытия.

Известен способ получения пористого материала, включающий отверждение измельченного порошка композиционного связующего в необходимой для изготовления пресс-форме, что обеспечивает получение продукта с заданной пористостью и свойствами, в частности, с низким поглощением влаги, а также изоляционными свойствами, в том числе для электротехнических применений, определяемых чрезвычайно низким значением угла потерь пористых тел в зависимости от подбора условий осуществления способа (GB 783324 А, опубл. 18.09.1957). Отличием этого способа от заявляемого является принцип получения пор: в указанном способе поры формируются под действием газа.

Из документа JP 3244652 В2, опубл. 07.01.2002 известен способ получения пористых полимерных материалов с армированными порами из нанокомпозиционного связующего, включающий этап, на котором получают нанокомпозиционное связующее. Данный способ является наиболее близким. Отличием данного изобретения от известного является то, что на втором этапе получают порошок из нанокомпозиционного связующего с помощью криомельницы или шаровой мельницы, а на третьем этапе проводят отверждение порошка в необходимой для изготовления изделия пресс-форме, а также безрастворная технология на всех этапах.

Известно использование шаровой мельницы из SU 910659 А1, опубл. 07.03.1982 (Д5, 2 с.), для получения порошка полиакриламида. Известен способ измельчения с помощью криомельницы из RU 2389738 С2, опубл. 20.05.2010 (Д4, 35 с.), для получения порошка ПЭТФ смолы.

Выбор наноматериала

Наноматериал для получения нанокомпозиционного микропористого связующего может быть выбран из широкого спектра наноматериалов: одностенные углеродные нанотрубки, многостенные углеродные нанотрубки, графен, фосфорен, фуллерены, монтмореллонит, наноалмазы, наночастицы цветных металлов, нановолокна, нанотрубки из нитрида бора и т.д. При этом для достижения необходимых для материала диэлектрических свойств на определенных частотах, его свойства могут задаваться подбором нескольких различных типов наноматериалов, которые в совокупности будут определять его электрические, теплофизические свойства и, как следствие, профиль частотного спектра.

Выбор связующего

Связующее подбирается таким образом, чтобы поры внутри микропористого пластика имели армирующий элемент с галтелей (см. фиг. 1 и фиг. 2), при этом, состав самого связующего может быть многокомпонентным и изготовлен на основе цианат-эфира, эпоксида, полиимида, бензоксазина, фталонитрила, бисмалеимида, фенол-формальдегида, новолака, амида, акрилата, полиэфирэфиркетона или их сочетании. В зависимости от подбора компонентов связующего возможна регуляция профиля частотного спектра мнимой и действительной частей диэлектрической проницаемости и проводимости микропористого пластика на необходимых частотах и оптимизация его физико-механических свойств, в том числе термического расширения, светопоглощения, светоотражения и влагопоглощения. Используя связующие с различной диэлектрической проницаемостью и проводимостью, возможно создать олигомер или пластик с несколькими взаимопроникающими полимерными сетками, которые при этом не будут ковалентно связаны, например, для получения определенных радиопоглощающих свойств нанокомпозиционного пластика.

Выбор дисперганта

Для пердотвращения седементации наноматериала и его прочной связи с матрицей связующего используется диспергант таким образом, чтобы не только предотвратить охрупчевание отвержденного нанокомпозиционного пластика на высоких концентрациях наноматериала, но и улучшить его физико-механические свойства. Например, диспергант может быть на основе полиимида с привитыми к нему цепочками бисфенола а акрилата (см. патент US 20130035419 A1)

Выбор способа диспергирования

Для того чтобы получить однородную дисперсию наноматериала и дисперганта в связующем необходимо тщательное их диспергирование с помощью одного или нескольких из следующих способов: ультразвуковое перемешивание, использование гриндера, диссольвера и/или шаровой мельницы, криоизмельчение. При этом диспергирование может происходить на стадии получения смеси мономеров и дисперганта с наноматериалом, либо на стадии олигомеризации полученной смеси для получения нанокомпозиционного связующего или на стадии отверждения нанокомпозиционного связующего для получения необходимой структуры и топологии микропористого пластика.

Выбор микроармирующих материалов

Для увеличения физико-механических свойств микропористого пластика на стадии синтеза нанокомпозиционного связующего, в порошок смеси мономеров вместе с диспергантом и наноматериалом возможно добавление высокомодульных, высокопрочных или теплопроводящих микроволокон. Например стекловолокон, кварцевых волокон, арамидных, полианилиновых и полеолефиновых волокон, а также углеволокон или их сочетании для получения гибридного армированного микропористого пластика. Использование волокон из диэлектрика целесообразно для получения радиопрозрачного материала, используемого, например, для защиты антенных систем, а гибридное использование диэлектрических, электро- и теплопроводящих волокон подходит для создания радиопоглощающего материала типа «стелс». Полученное после синтеза нанокомпозиционное связующее, армированное микроволокнами может быть применено для создания микропористого пластика или цельного пластика с помощью методов горячего прессования, экструзии или 3D печати по технологии СLIР для сложных деталей небольшого размера. Методы прессования или экструзии позволяют получить необходимые детали практически любой формы в качестве самостоятельных или сэндвич-структур, не прибегая к препреговой технологии, что позволяет существенно упростить технологический процесс их изготовления. С помощью данного способа можно изготовить детали рефлектора или укрытий для антенных систем, а также детали радиопоглощающей обшивки по технологии «Стелс».

Способ получения микропористого нанокомпозиционного пластика с армированными порами

Пример №1

1-ая стадия) Получение однородной смеси мономера цианат-эфира вместе с диспергантом и наноматериалом

2-ая стадия) Получение олигомера нанокомпозиционного связующего при температуре 150°С

3-ая стадия) Механическое измельчение олигомера нанокомпозиционного связующего с помощью криомельницы

4-ая стадия) Нагрев порошка в пресс-форме до температуры отверждения 120°С

5-ая стадия) Отверждение в течение 8-ми часов

Пример №2

1-ая стадия) Получение однородной смеси мономера цианат-эфира и мономера бисмалеимида в весовом соотношении 1:1 вместе с диспергантом и наноматериалом

2-ая стадия) Получение олигомера нанокомпозиционного связующего при температуре 150°С

3-ая стадия) Механическое измельчение олигомера нанокомпозиционного связующего с помощью шаровой мельницы

4-ая стадия) Нагрев порошка в пресс-форме до температуры отверждения 180°С

5-ая стадия) Отверждение в течение 3-х часов

Пример №3

1-ая стадия) Получение однородной смеси мономера цианат-эфира и бензоксазина в весовом соотношении 1:1 вместе с диспергантом, наноматериалом и микроармирующими волокнами

2-ая стадия) Получение олигомера нанокомпозиционного связующего при температуре 120°С

3-ая стадия) Механическое измельчение олигомера нанокомпозиционного связующего с помощью гриндера при комнатной температуре

4-ая стадия) Нагрев порошка в пресс-форме до температуры отверждения 180°С

5-ая стадия) Отверждение в течение 3-х часов

Результаты физико-механических испытаний нанокомпозиционных микропористых пластиков, отвержденных при Т=1800С.

Способ получения нанокомпозиционных микропористых пластиков на основе цианат-эфира с армированными порами без использования растворителей, включающий два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси, содержащей мономер цианат-эфира, углеродные нанотрубки и диспергант с последующим измельчением связующего криомельницей, гриндером или шаровой мельницей с получением порошка, на втором этапе производят термоотверждение порошка в пресс-форме при температуре 120-180°С в течение 3-8 часов.



 

Похожие патенты:

Изобретение относится к области создания биоразлагаемых полимерных композиционных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, для очистки сточных вод от белковых токсикантов, а также для изготовления пластмассовых изделий с регулируемыми сроками эксплуатации.

Изобретение относится к способам получения пенопластовых формованных изделий, которые пригодны в качестве конструктивного элемента для изготовления космических аппаратов, воздушных летательных аппаратов, средств водного транспорта и сухопутных транспортных средств.
Изобретение относится к области получения сорбционно-активных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, а также для очистки сточных вод от белковых токсикантов.

Изобретение относится к технологии получения изделий из гранулированных полимерных материалов. В пресс-форму засыпают полимер в виде гранул с размерами более 1 мм.
Изобретение относится к области изготовления гидрофильных капиллярно-пористых полимерных материалов и может быть использовано в косвенно-испарительных системах охлаждения воздуха.

Изобретение относится к формовочному порошку, содержащему частицы полиэтилена, способу получения пористых изделий и пористому спеченному изделию. .
Изобретение относится к получению композиционного материала для защиты от электромагнитного излучения экранированием и может быть использовано в электронике, радиотехнике, а также в ряде изделий специального назначения.
Изобретение относится к области органических высокомолекулярных соединений, в частности к обработке изделий из углепластика. Способ обработки изделий из углепластика содержит обработку без нагрева пульсирующим газовым потоком.

Группа изобретений относится к производству стальных труб с защитным полимерным покрытием. Способ включает последовательное нанесение на поверхность стальной трубы первого, затем второго и наружного покрытий.
Изобретение относится к радиационной химии и химии высоких энергий по получению, с помощью терморадиационной обработки заготовок, полимерных материалов с улучшенными эксплуатационными характеристиками, в частности политетрафторэтилена (ПТФЭ) и других марок фторопластов, используемых в различных областях промышленности.

Способы обработки древесины и продуктов из древесины включают облучение древесины, имеющей первую молекулярную массу, ионизирующим излучением, чтобы обеспечить увеличение молекулярной массы целлюлозного компонента древесины до второй относительно более высокой молекулярной массы, введение в облученную древесину жидкости, включающей лигнин, с получением комбинации древесина/лигнин, и облучение комбинации древесина/лигнин с получением древесины, включающей сшитый лигнин.
Изобретение относится к способу получения предварительно вспененных частиц поли(мет)акрилимида (P(M)I), которые можно дополнительно обработать с получением деталей из формованных пеноматериалов или композиционных материалов.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении углепластиков для космического и авиационного аппаратостроения, а также для строительных конструкций.

Изобретение относится к способу радиационной сшивки полимерной изоляции электрических кабелей и проводов и устройству для его осуществления Способ и устройство (реактор с «прозрачным» электродом) для радиационной сшивки полимерной изоляции электрических кабелей и проводов рентгеновским излучением электрического газового барьерного разряда (ЭГБР) относятся к области радиационной модификации полимеров и могут быть использованы при производстве силовых кабелей, бортовых авиационных проводов (БАП), нагревостойких нефтепогружных кабелей, труб, термоусаживающихся пленок трубок, защитных оконцевательных кабельных кап и т.д.

Изобретение относится к технологии микроэлектроники, а именно изготовлению изделий микроэлектроники, содержащих в конструкции клеевое адгезионное соединение «полиимидная пленка-металл».

Изобретение относится к медицине, в частности к биомедицинскому материаловедению, и раскрывает метод получения гидрогелей с заданными механическими свойствами и архитектоникой.

Изобретение относится к лаковым композициям на основе олигоуретанакрилатов, модифицированных соединениями фурфурола и фурилового спирта, которые могут быть использованы для создания декоративно-защитного покрытия при защите деревянных поверхностей и конструкций от атмосферных воздействий, агрессивных сред и грибковых поражений древесины.

Изобретение относится к сельскому хозяйству, медицине, ветеринарии и фармацевтической промышленности. Способ повышения антибактериальных свойств наночастиц серебра включает обработку УФ-излучением мощностью 40 Вт и длиной волны λ=254 нм препарата наночастиц серебра размером 70±0,5 нм в диапазоне концентраций 0,1-0,05М в течение 1-5 мин.

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси, содержащей мономер цианат-эфира, углеродные нанотрубки и диспергант с последующим измельчением связующего криомельницей, гриндером или шаровой мельницей с получением порошка, на втором этапе производят термоотверждение порошка в пресс-форме при температуре 120-180°С в течение 3-8 часов. Технический результат – обеспечение устойчивых к охрупчиванию микропористых пластиков на основе цианат-эфира и высоким содержанием углеродных нанотрубок с требуемой диэлектрической проницаемостью и улучшенными физико-механическими свойствами. 1 табл., 2 ил., 3 пр.

Наверх