Самоходный поисковый подводный аппарат



Владельцы патента RU 2688562:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" (RU)

Самоходный поисковый подводный аппарат имеет бортовую систему обнаружения, в состав которой входит устройство оптического обнаружения спутного вихревого следа подвижных морских объектов и вычислительное устройство, которое рассчитывает скоростной режим и траекторию движения самоходного поискового подводного аппарата для догона морского объекта после обнаружения его спутного вихревого следа, а двигательная установка имеет механизм переключения скорости движения. Обеспечивается возможность обнаружения морского объекта на значительном удалении по его спутному вихревому следу и сближения с ним вплотную.

 

Изобретение относится к области морской техники и может быть использовано для поиска морских объектов.

Известно, что для поиска морских объектов используют различные измерительные устройства, основанные на регистрации в водной среде материальных тел и присущих им физических полей. Из-за особенностей распространения в воде различных видов энергии наиболее широкое распространение получили гидроакустические средства поиска, основанные на законах распространения звука в воде.

Для поиска морских объектов и выполнения других задач в водной среде, в том числе физического воздействия на морские объекты, на флотах применяются различные подводные аппараты, такие, как торпеды, мины, необитаемые подводные аппараты, оснащенные средствами обнаружения [1, 2].

В общем случае подводные аппараты имеют корпус обтекаемой цилиндрической или иной формы, средства движения и энергообеспечения, гидроакустические и телевизионные средства поиска подводных объектов, навигационное оборудование, средства связи, отсек для полезной нагрузки, приборы управления [3, 4].

Известен самоходный поисковый подводный аппарат, принятый за прототип изобретения, представляющий собой торпеду, которая в качестве полезной нагрузки имеет боевую часть с зарядом взрывчатого вещества и взрывателем, бортовые системы управления и обнаружения цели, служащие для поиска, обнаружения и наведения на цель, сближения с ней вплотную или на дистанцию срабатывания неконтактного взрывателя, энергетическую установку, обеспечивающую работу приборов управления и органов движения, двигательную установку и движитель [5, 6]. Практическая торпеда в качестве полезной нагрузки вместо боевой части оснащается регистрирующей аппаратурой и устройствами для подъема ее из воды.

Торпеды различаются: по габаритам (калибр - 324, 400, 482, 533, 550 и более мм); по носителям - корабельные и авиационные; по способу управления - самонаводящиеся и телеуправляемые; по назначению - противокорабельные, противолодочные, универсальные; по типу энергосиловой установки - тепловые и электрические [7].

Для поиска цели в торпедах используются системы наведения. Как было отмечено выше, из-за особенностей распространения в воде различных видов энергии, наиболее широкое распространение получили гидроакустические средства поиска. Самонаводящиеся торпеды имеют в основном акустические автономные системы самонаведения, которые обнаруживают цель, определяют ее положение относительно продольной оси торпеды и вырабатывает необходимые команды для системы управления. В современных торпедах применяют системы самонаведения, которые обеспечивают наведение торпеды на цель по отраженным от нее звуковым импульсам (активные ССН) или по шуму от винтов и работающих механизмов (пассивные ССН).

Телеуправляемые торпеды оснащают системами телеуправления с проводной или оптоволоконной линиями связи. Команды управления формируются на корабле и в виде электрических сигналов подаются на торпеду. Точность наведения торпеды зависит от погрешностей работы гидроакустического комплекса корабля. При подходе к цели торпеду переводят в режим поиска цели и в режим самонаведения.

Универсальные торпеды применяются как по подводным лодкам, так и по надводным кораблям (судам). Их оснащают акустическими системами самонаведения в противолодочном и противокорабельном варианте, а также системой телеуправления. Универсальная торпеда имеет прочный корпус, обеспечивающий ее живучесть при стрельбе по подводной лодке, идущей на большой глубине [5].

Активные ССН торпед излучают и принимают звуковые импульсы в двух плоскостях: в горизонтальной - по курсу торпеды и в вертикальной - по ее глубине.

Двухплоскостные ССН используются в противолодочных и универсальных торпедах, а одноплоскостные - в противокорабельных. При этом задействуется либо горизонтальная плоскость, либо вертикальная, как, например, в подструйной ССН торпеды Мк45 F мод. 1 (США), работающей с кильватерным следом цели [6].

Наиболее сложными для поиска являются подвижные морские объекты и, в частности, подводные лодки. Подводные лодки представляют наибольшую опасность для военной и экономической инфраструктуры государств в глобальном и в региональном масштабе, так как они обладают высокой скрытностью и большим ударным потенциалом, включающим межконтинентальные баллистические ракеты, крылатые ракеты большой дальности, минное оружие и другие средства. Для эффективного противодействия им требуется широкое привлечение авиации, подводных лодок, надводных кораблей с применением торпедного оружия и поисковых подводных аппаратов. При этом эффективность действий этих сил и, в конечном счете, исход боевых столкновений сил и средств сторон, зависит от соотношения дальностей взаимного обнаружения. Известно, что авиация и надводные корабли обнаруживаются подводной лодкой заблаговременно, и только подводные лодки имеют между собой приблизительный паритет. Поэтому объектом изобретения являются торпеды, применяемые с подводных лодок.

Таким образом, главной задачей поиска морских объектов и, в частности, подводных лодок, является упреждение в их обнаружении. Применяемые для обнаружения морских целей акустические средства имеют в разных странах схожие характеристики и не обеспечивают существенных преимуществ какой-либо стороне. Это касается как дальностей обнаружения морских целей, так и их кильватерного следа. С учетом вышеизложенного, торпеды во всех вариантах их оснащения, а потому и подводные лодки - носители торпед, не имеют преимуществ в дальности обнаружения подводной цели, что является их главным недостатком.

Современные исследования водной среды показали, что в процессе взаимного смещения слоев воды из-за влияния струй и вихрей сплошность гидродинамических явлений дополнительно приводит к формированию поля акустических центров рассеяния в виде зоны сплошной возмущенности с плавным изменением интенсивности и местными локальными проявлениями всплесков. Нестационарные режимы вихревых течений образуют спутный вихревой след, тянущийся за материальным объектом, который может быть обнаружен в течение нескольких часов после своего появления высокочувствительными оптическими приборами [8].

Имеющиеся малогабаритные лазерные излучатели и высокочувствительные фотоприемники позволяют обнаруживать спутный вихревой след (СВС) после прохождения подводного объекта с помощью оптических средств и методов на расстоянии десятков и сотен км от него [9]. Применение данного метода и указанных средств позволяет в отличие от акустики, многократно повысить дальность обнаружения морской цели и значительно опередить ее в этом.

Известно устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений, служащее для обнаружения СВС цели, которое основано на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV - Particle Image Velocimetry) [10]. Оно включает источник лазерного излучения (импульсный лазер с энергией не менее 120 мДж), приемник изображений засеянных частиц с двумя CCD-камерами с оптическими узкополосными фильтрами (CCD -charge-coupled device, прибор с зарядовой связью), процессор обработки изображений, лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере и процессоре обработки доплеровских сигналов, и персональный компьютер.

Устройство позволяет исследовать кинематические характеристики потоков жидкости и газа, измерять скорости сопутствующих потоку частиц в фиксированной точке течения и по трекам частиц анализировать поля скорости потока в фиксированном сечении.

Применение ЛДА позволяет проводить только последовательные измерения скорости в пространстве, переходя от точки к точке исследуемого течения, а использование PIV (Particle Image Velocimetry) - получать мгновенное распределение скорости в исследуемом сечении и наблюдать мгновенную картину течения в пределах двумерной плоскости светового ножа. При диагностике осциллирующих вихревых течений совместное использование ЛДА для измерения скорости лазерным доплеровским анемометром и PIV для анализа структуры течения по трекам частиц позволяет существенно улучшить временное и пространственное разрешение измерений и обеспечивает высокую скорость обработки полученных изображений.

Устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений с совместным использованием ЛДА и PIV включает:

- источник лазерного излучения (лазер),

- приемник изображений засеянных частиц с двумя CCD-камерами с оптическими узкополосными фильтрами и процессором обработки изображений,

- лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере,

- процессор обработки доплеровских сигналов.

Использование CCD-камер с частотным разрешением от 8 до 16 Гц позволяет проводить измерения мгновенного трехкомпонентного поля скорости в 8-16 точках периода пульсаций вихревой структуры, что существенно улучшает временное разрешение и точность измерений [10].

Указанное устройство, выполненное в малых габаритах и установленное в составе бортовой системы обнаружения морских объектов, позволит СППА обнаруживать их на больших удалениях, значительно упреждая их в этом.

Догон обнаруженного морского объекта вдоль СВС может быть обеспечен за счет изменения режима движения самоходного поискового подводного аппарата (СППА) на траектории с учетом показателя его ходового качества (ХК), определяемого по формуле [4, 12, 13]:

XK=DV2,

где D - дальность хода, V - скорость движения.

Некоторые современные торпеды имеют механизмы переключения скорости движения на дистанции, служащие им для снижения скорости в поисковом режиме и ее повышения до максимального значения на участке наведения. Однако показатель ходового качества многорежимных торпед в разных режимах движения не одинаков, так как КПД двигателя и движителя резко меняется при изменении числа оборотов вала [6].

Оценка ходовых качеств двухрежимной торпеды, например, Mk 48 (США) показывает, что ее скорость V1=55 уз соответствует дальности хода D1=38 км. При уменьшении скорости до V2=40 уз дальность ее хода D2 должна возрасти и достичь значения:

На самом деле дальность хода D2 торпеды Mk 48при скорости V2=40 уз составляет 50 км [14]. То есть, использование механизма переключения скорости движения СППА и ее уменьшение на 15 уз (27%) дает прирост дистанции на 12 км (32%).

Целью изобретения является разработка устройства самоходного поискового подводного аппарата, способного обнаруживать морской объект на значительном его удалении по спутному вихревому следу и после этого сближаться с ним вплотную.

Для достижения цели изобретения предлагается самоходный поисковый подводный аппарат, включающий отсек с полезной нагрузкой с боевой частью, зарядом взрывчатого вещества и взрывателем или регистрирующей аппаратурой и устройствами для подъема аппарата йз воды, бортовые системы управления и обнаружения морских объектов, служащие для их поиска, обнаружения и наведения, энергетическую установку, обеспечивающую работу приборов управления и органов движения, двигательную установку и движитель, отличающийся тем, что дополнительно в состав бортовой системы обнаружения включается устройство оптического обнаружения спутного вихревого следа морских объектов и вычислительное устройство, а двигательная установка имеет механизм переключения скорости движения.

Устройство оптического обнаружения спутного вихревого следа морского объекта, в качестве которого может быть использовано, например, устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений, размещается в приборном отсеке СППА и обеспечивает обнаружение морского объекта по его спутному вихревому следу.

Вычислительное устройство рассчитывает скоростной режим и траекторию движения СППА для догона морского объекта после обнаружения его спутного вихревого следа.

Техническим результатом изобретения является устройство самоходного поискового подводного аппарата, способного обнаруживать морской объект на значительном удалении по его спутному вихревому следу и после этого сближаться с ним вплотную.

Источники информации, использованные при выявлении изобретения и составлении его описания:

1. Сурин В.В., Пелевин Ю.Н., Чулков В.Л. Противолодочные средства иностранных флотов. - М.: Воениздат, 1991.

2. Автономные подводные аппараты. Материалы сайта Института проблем морских технологий Дальневосточного отделения РАН, 2002.

3. Сиденко К.С., Илларионов Г.Ю. Подводная лодка и автономный необитаемый подводный аппарат // МРЭ, №2, 2008.

4. Пантов Е.Н., Махин Н.Й., Шереметьев Б.Б. Основы теории движения подводных аппаратов. - Л.: Судостроение, 1973. - 209 с.

5. Торпеда. Военно-морской словарь /Гл. ред. В.Н. Чернавин. - М.: Воениздат, 1989. - 511 с. С. 431.

6. Косарев В.В., Садовников В.Н. Торпедное оружие: Методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / СПбГЭУ «ЛЭТИ»/. - СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2000. - 48 с. С. 13-21, 27-30.

7. Кузин В.П., Никольский В.И. Военно-морской флот СССР 1945-1991. -СПб.: Историческое Морское Общество, 1996. - 614 с.

8. Андронов П.Р., Гувернюк С.В, Дынникова Г.Я. Вихревые методы расчета нестационарных гидродинамических нагрузок. - М.: Изд-во Моск. унта, 2006. - 184 с., с. 18.

9. Системы лазерного сканирования для проведения подводных исследований. - URL: http://avia.pro/blog/sistemy-lazernogo-skanirovaniya-dlya-provedeniya-podvodnyh-issledovaniy - 2015-01 -31. - 2015.

10. Патент на полезную модель RU 121082. Устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений / И.В. Наумов. М.: ФИПС, 2012. Бюл. №28

11. Коптев Б.А., Гусев А.Л. Тенденции развития зарубежного торпедного оружия // Морская радиоэлектроника, №3 (17), 2006, с. 58-63.

12. Костенко В.В., Михайлов Д.Н. Определение параметров энергосиловой установки автономного необитаемого подводного аппарата по заданной дальности хода. - Известия ЮФУ. Технические науки. - С. 70-73 с.

13. Стекольников Ю.И. Энергосиловые установки торпед: Учебное пособие / Военно-морская академия им. Н.Г.Кузнецова. - СПб.: ВМА, 2002. - 240 с.

14. Сариев К.С.Универсальная тяжелая торпеда Мк 48//Материалы Всероссийской научно-практической конференции «Морское подводное оружие. Перспективы развития». СПб.: ФГУП «Крыловский государственный научный центр», 2015. 125 с: ил. С. 105-111.

Самоходный поисковый подводный аппарат, в состав которого входят отсек с полезной нагрузкой, в качестве которой применяется боевая часть с зарядом взрывчатого вещества и взрывателем или регистрирующая аппаратура и устройства, обеспечивающие подъем аппарата из воды, бортовые системы управления и обнаружения морских объектов, энергетическая и двигательная установки, органы управления и движитель, отличающийся тем, что дополнительно в состав бортовой системы обнаружения включается устройство оптического обнаружения спутного вихревого следа подвижных морских объектов и вычислительное устройство, которое рассчитывает скоростной режим и траекторию движения самоходного поискового подводного аппарата для догона морского объекта после обнаружения его спутного вихревого следа, а двигательная установка имеет механизм переключения скорости движения.



 

Похожие патенты:

Изобретение относится к Военно-Морскому флоту и применяется для стрельбы по морским целям из торпедного аппарата как с подводной лодки, так и с надводного корабля. .

Изобретение относится к области торпедного оружия. .
Изобретение относится к способам поражения морских целей в отдаленных районах, в частности к способам применения морских мин, доставляемых в район минной постановки носителями-транспортировщиками и являющихся средствами дистанционного минирования.

Изобретение относится к торпедам. Облегченная миниатюрная торпеда (12) содержит контактный и крепежный узел (22), который выполнен с возможностью удержания торпеды (12) по отношению к корпусу корабля в ответ на контакт с этим корпусом корабля, камеру (24), функционально соединенную с контактным и крепежным узлом (22) и содержащую по меньшей мере один воспламеняющийся элемент (132), который выполнен с возможностью перемещения в камере (24), и приводной механизм (128), который выполнен с возможностью перемещения указанного по меньшей мере одного воспламеняющегося элемента (132) из камеры (24) по направлению к корпусу корабля в ответ на прикрепление указанного устройства контактным и крепежным узлом (22) к корпусу корабля, и узел (74) зажигания, соединенный с контактным и крепежным узлом (22) и выполненный с возможностью зажигания указанного по меньшей мере одного воспламеняющегося элемента (132) по мере перемещения указанного по меньшей мере одного воспламеняющегося элемента (132) по направлению к корпусу корабля.

Изобретение относится к торпедам. Торпеда содержит боевую часть, систему управления, двигатель и запас энергии для него.

Изобретение относится к области военной техники. Устройство для уничтожения кораблей противника, содержащее торпедный аппарат и торпеду.

Изобретение относится к вооружению подводных лодок, а именно к способу защиты подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед. .

Изобретение относится к военной технике, более конкретно к торпедам. .

Изобретение относится к противолодочному оружию, более конкретно к акустическим самонаводящимся торпедам. .

Изобретение относится к гидродинамике. .

Изобретение относится к области торпедного оружия, в частности к интеллектуальной кавитационно-реактивной торпеде с разделяющимися головными частями, где каждая разделяющаяся головная часть может многократно делиться и содержать интеллектуальный блок и может быть использована в военной технике, на подводных лодках, кораблях и авиации в качестве наступательного или оборонительного оружия, которое может нести атомные боевые головки.

Изобретение относится к области морского оружия и может быть использовано в самодвижущихся подводных аппаратах. .
Система для выхода подводной лодки на связь с пунктом управления содержит подводную лодку, оборудованную устройством для хранения и выпуска радиобуя и буксируемой лодочной катушки с проводной или оптоволоконной линией связи, и радиобуй подводной лодки, имеющий плавучесть и противовес, источник тока и средства радиосвязи, управляющее устройство, которое управляет работой радиобуя в соответствии с командами, поступающими с борта подводной лодки, устройство изменения плавучести, катушку с проводной или оптоволоконной линией связи, приемник и преобразователь оптической информации в радиосигналы, приемник системы географического позиционирования, видеокамеру и устройство самоликвидации.

Изобретение относится к океанологии и может быть использовано для гидроакустических исследований. Технический результат - повышение точности определения горизонта источника звука за счет маневра планера по глубине с синхронным измерением максимума ротора вектора интенсивности, повышение точности определения пеленга на источник за счет использования вихревой составляющей вектора интенсивности и увеличение дальности его обнаружения путем применения системы активного гашения собственной вибрационной помехи и повышения помехоустойчивости измерительного комплекса планера за счет увеличения числа информативных параметров.
Изобретение относится к ледокольным работам. Предложен способ разрушения ледяного покрова подводным судном, заключающийся в том, что подводное судно начинают перемещать подо льдом на безопасной глубине с резонансной скоростью, возбуждая изгибно-гравитационные волны, при этом во время движения судна открывают крышки торпедных аппаратов.

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров. Предложено устройство для разрушения ледяного покрова, состоящее из подводного судна, снабженного якорем, диаметр раскрытия лап которого должен быть больше длины рубки, обеспечивающим при помощи троса прикрепление судна ко льду, и балластными цистернами, заполнение которых забортной водой обеспечивает возникновение отрицательной силы плавучести, достаточной для разрушения ледяного покрова заданной толщины.

Изобретение относится к управлению беспилотным подводным транспортным средством под водой. Для управления автономным подводным транспортным средством в месте, находящемся под водой, согласно способу опускают по меньшей мере одну корзину автономного подводного транспортного средства к месту, находящемуся под водой возле по меньшей мере одной заранее установленной подводной конструкции, которая имеет средства обеспечения ее электрической энергией.

Изобретение относится к области техники устойчивых к давлению конструкций корпусов, в частности батискафов. Предложена самобалансирующаяся устойчивая к давлению конструкция корпуса, которая содержит сферические внутренний (1, 2), промежуточный (3, 4) и внешний(5, 6) корпуса, последовательно расположенные изнутри наружу относительно центра сферы; указанные внутренний и промежуточный корпуса, а также промежуточный и внешний корпуса соединены друг с другом посредством пары симметричных коаксиальных соединительных осей (15, 16, 17, 18) в сборе, при этом осевые линии двух пар соединительных осей в сборе взаимно перпендикулярные, что обеспечивает возможность поворота внутреннего и промежуточного корпусов, а также промежуточного и внешнего корпусов относительно друг друга; на каждой из соединительных осей в сборе установлено амортизирующее средство (151, 161, 171, 181) для противодействия биению соседних корпусов друг о друга в осевом направлении.

Изобретение относится к подводным техническим средствам для исследования и освоения мирового океана. Предложен малогабаритный многофункциональный автономный необитаемый подводный аппарат (АНПА), предназначенный для выполнения широкого круга исследовательских, поисковых и подводно-технических работ на шельфе.

Изобретение относится к области кораблестроения, в частности к корпусным конструкциям подводных технических средств. Предложена межотсечная переборка подводного технического средства, которая содержит внутренний сферический и наружный тороидальный участки полотна, при этом выпуклость внутреннего сферического участка полотна обращена в направлении оконечности прочного корпуса подводного технического средства, а выпуклость тороидального участка обращена противоположно этой оконечности.

Изобретение относится к области подводного кораблестроения, в частности к пропульсивным электроэнергетическим установкам с гребными электродвигателями, и может быть использовано в судостроении.

Самоходный поисковый подводный аппарат имеет бортовую систему обнаружения, в состав которой входит устройство оптического обнаружения спутного вихревого следа подвижных морских объектов и вычислительное устройство, которое рассчитывает скоростной режим и траекторию движения самоходного поискового подводного аппарата для догона морского объекта после обнаружения его спутного вихревого следа, а двигательная установка имеет механизм переключения скорости движения. Обеспечивается возможность обнаружения морского объекта на значительном удалении по его спутному вихревому следу и сближения с ним вплотную.

Наверх