Хроматографический способ разделения компонентов смеси в растворе



Хроматографический способ разделения компонентов смеси в растворе
Хроматографический способ разделения компонентов смеси в растворе
Хроматографический способ разделения компонентов смеси в растворе
B01D2015/3895 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2688594:

федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) (RU)

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси. Разделяемые компоненты смеси представляют собой молекулы органических красителей. В качестве неподвижной фазы используют прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов среду. При прохождении через хроматографическую колонку контролируемой смеси ее последовательно облучают одним или несколькими источниками непрерывного лазерного излучения с длиной волны, соответствующей области поглощения одного из компонентов разделяемой смеси. Плотность мощности используемого лазерного излучения превышает пороговое значение 5 Вт/см2. Изобретение позволяет повысить эффективность разделения, сократить время, затрачиваемое на процесс разделения. 5 ил.

 

Заявляемый способ относится к области аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси.

Известен способ для разделения веществ - хроматография (J. Miller, Chromatography: Concepts and Contrasts, Second Edition, 9.09.2013, Wiley). В хроматографии используются две фазы: подвижная и неподвижная. В зависимости от типа подвижной фазы хроматография классифицируется на газовую и жидкостную хроматографию. Принцип действия хроматографии состоит в следующем: смесь разделяемых веществ вносится в подвижную фазу, которая проходит через неподвижную фазу. При прохождении через неподвижную фазу компоненты смеси взаимодействуют с поверхностью хроматографической колонки. Скорость прохождения каждого компонента уменьшается в соответствии с количеством актов адсорбции и десорбции молекул соответствующего компонента. Чем большее количество раз молекулы компонента провзаимодействуют с неподвижной фазой хроматографа, тем больше будет его время прохождения через хроматографическую колонку. Длительности процесса разделения посредством хроматографии очень велика. Также с помощью хроматографии невозможно разделить вещества ряда классов, по причине близких адсорбционных свойств.

Известен способ для разделения веществ, выбранный в качестве прототипа -высокоэффективная жидкостная хроматографиия, описанный в (Майер В., Практическая высокоэффективная жидкостная хроматография, Техносфера, 12 апреля 2017). Особенностью высокоэффективной жидкостной хроматографии является использование в качестве неподвижной фазы полярного микропористого материала.

Принцип работы жидкостной хроматографии состоит в следующем:

1. с помощью блока накачки полярный растворитель (подвижная фаза, элюент) подается в хроматографическую колонку при высоком давлении, т.е. формируют поток подвижной фазы

2. в подвижную фазу (элюент) вводится разделяемый раствор;

3. далее элюент попадает в хроматографическую колонку, где располагается неподвижная фаза хроматографа (пористый материал);

4. в хроматографической колонке происходит взаимодействие компонентов смеси с подвижной и неподвижной фазой хроматографа, за счет чего компоненты смеси движутся по хроматографической колонке с различными скоростями;

5. детектор, который представляет собой спектроанализатор или масс-спектрометр, измеряет концентрации компонентов смеси.

Для разделения компонентов смеси при помощи насосов создается поток жидкости - подвижной фазы хроматографа. При помощи диспенсера исследуемый образец попадает в подвижную фазу, далее вещество направляется в хроматографическую колонку. В хроматографической колонке происходит взаимодействие исследуемых образцов с поверхностью неподвижной фазы. За счет различий в механизмах взаимодействия отдельных компонентов разделяемой смеси происходит запаздывание последних. Каждый компонент в хроматографической колонке хроматографа движется со своей скорости, за счет чего происходит разделение компонентов во времени. Детектор на основе светодиодов измеряет изменение концентрации компонентов смеси во времени.

Жидкостная хроматография позволяет разделять компоненты различных растворов, включая органические и неорганические молекулы, атомы, белки и другие биологические объекты.

Основным недостатком прототипа является низкая чувствительность к классам соединений, молекулы которых имеют схожие механизмы адсорбции и десорбции.

Изобретение решает следующие задачи:

- расширение классов разделяемых компонентов за счет стимуляции механизмов взаимодействия частиц разделяемых компонентов с помощью возбуждения оптическим излучением;

- уменьшение времени, затрачиваемого на процесс разделения веществ; Поставленная задача решается следующим образом.

В хроматографическом способе разделения компонентов смеси в растворе, включающем подачу подвижной фазы, с введенной в нее смесью разделяемых компонентов, в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси, в качестве неподвижной фазы используют прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов среду, а при прохождении через хроматографическую колонку контролируемой смеси, ее последовательно облучают одним или несколькими источниками непрерывного лазерного излучения с длиной волны, которую выбирают на основе спектров поглощения разделяемых компонентов смеси, а плотность мощности используемого лазерного излучения превышает пороговое значение 5 Вт/см2.

На выходе хроматографической колонки располагается система измерения концентраций компонентов смеси.

Сущность заявляемого способа поясняется следующим.

Разделение компонентов различных растворов, включая разделение органических молекул, молекул белков, молекул аминокислот и других биологических объектов осуществляется при помощи селективного возбуждения компонентов смеси лазерным излучением. Это приводит к повышению чувствительности к разделению соединений, которые имеют схожие адсорбционные свойства, за счет фотовозбуждения отдельных компонентов смеси и стимуляции процессов взаимодействия молекул.

Смесь компонентов для разделения внедряется в подвижную фазу хроматографа. Подвижная фаза проходит через хроматографическую колонку. Во время прохождения хроматографической колонки производится облучение смеси лазерным излучением с длиной волны, соответствующей области поглощения одного из компонентов. Длина волны излучения должна удовлетворять следующему условию: атомы одного из компонентов должны поглощать фотоны и переходить в возбужденное состояние, в то же время, атомы остальных компонентов должны оставаться в основном состоянии. Плотность мощности лазерного излучения должна превосходить значение 5 Вт/см2. Для смеси, состоящей из трех и более компонентов используют нескольких стадий разделения. На каждой стадии атомы одного из компонентов приводятся в возбужденное состояние при помощи лазерного излучения. Возбужденные атомы одного из компонентов начинают сильнее взаимодействовать с поверхностью неподвижной фазы, таким образом, средняя скорость их перемещения по сравнению с остальными компонентами снижается. Это приводит к тому, что компоненты смеси выходят из хроматографической колонки в разные моменты времени. Концентрация разделенных компонентов регистрируется при помощи детектора.

Для разделения веществ используется механизмы взаимодействия молекул или атомов, возбужденных при помощи лазерного излучения с плотностью мощности, превышающей 5 Вт/см2, с поверхностью неподвижной фазы хроматографа. Исходный образец, содержащий смесь компонентов с близкими молекулярными массами, с различными спектрами поглощения, подается в хроматографическую колонку. Неподвижная фаза хроматографической колонки представляет собой пористую среду, прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов. При прохождении через хроматографическую колонку смесь облучается оптическим излучением с длиной волны, обеспечивающей возбуждение атомов или молекул одного из компонентов смеси, а плотность мощности лазерного излучения должна превышать пороговое значение 5 Вт/см2. Экспериментально показано, что процесс фотовозбуждения является пороговым. Пороговое значение плотности энергии измерено экспериментально и составляет 5 Вт/см2. Облучение компонентов смеси происходит на всей длине неподвижной фазы фотонного хроматографа. Целью облучения лазерным излучением одного из компонентов является возбуждение атомов или молекул соответствующего компонента. Молекулы или атомы одного из компонентов переходят в возбужденное состояние. Возбужденные молекулы начинают активнее взаимодействовать с поверхностью неподвижной фазой фотонного хроматографа (например, адсорбироваться на поверхности пористой среды), таким образом, скорость их движения через хроматографическую колонку существенно снижается по сравнению с невозбужденным компонентом. За счет усиленного взаимодействия, компонент, возбужденный при помощи лазерного излучения движется вдоль хроматографической колонки с меньшей скоростью, чем невозбужденный компонент.

Возбужденный компонент задерживается в хроматографической колонке, в то время как невозбужденные компоненты покидают ее. Таким образом, происходит отделение одного компонента смеси от остальных. После прохождения поверхности неподвижной фазы хроматографа концентрация облученного компонента снижается. То есть, изменяется концентрация компонентов смеси после прохождения хроматографической колонки по сравнению с составом смеси на входе устройства. Далее начинается вторая стадия разделения, где смесь из оставшихся компонентов облучается с помощью лазерного излучения с длиной волны, обеспечивающей переход в возбужденное состояние молекул или атомов второго компонента. Плотность мощности лазерного излучения превышает пороговое значение 5 Вт/см2. Количество стадий разделения, источников излучения определяется исходя из состава смеси. На каждой стадии происходит облучение одного из компонентов и его задержка в соответствующей зоне (неподвижной фазе) хроматографической колонки.

Таким образом, может осуществляться разделение веществ, очистка химических соединений, а также измерение состава смеси из нескольких компонентов. Использование механизмов возбуждения посредством лазерного излучения позволяет разделять классы молекул с близкими молекулярными массами, близкими механизмами взаимодействия для молекул в невозбужденном состоянии с поверхностью неподвижной фазы, которые трудно разделять при помощи жидкостной хроматографии, а также измерять концентрации отдельных компонентов смеси.

Сущность заявляемого способа поясняется чертежами, где на фиг. 1 схематично изображены устройство для разделения атомов и молекул заявляемым способом фотонной фотометрии и проиллюстрирован процесс разделения, на фиг. 2 представлена конструкция хроматографической колонки на основе пористого боросиликатного стекла. На фиг. 3 представлен спектр поглощения красителей: родамина 6Ж. На фиг. 4 представлен спектр поглощения цитозина. На фиг. 5 представлены скорости изменения концентрации для родамина 6Ж и цитозина при прохождении хроматографической колонки без облучения и с облучением на длине волны, соответствующей пику поглощения родамина 6Ж.

Устройство, на котором может быть осуществлен заявляемый способ (фиг. 1) содержит неподвижную фазу 1, хроматографической колонки 2, с обеих сторон которой размещаются емкость для подачи разделяемой смеси компонентов 3 и емкость для измерения концентраций разделенных компонентов 4, используемые в качестве резервуара для исходной смеси веществ и для сбора и измерения концентрации разделенных компонентов, источника постоянного напряжения 5, электрически соединенного с емкостью для подачи разделяемой смеси компонентов 3 и емкостью для сбора и измерения концентрации разделенных компонентов 4, при приложении электрического поля которого осуществляется движение подвижной фазы через неподвижную фазу 1 хроматографической колонки 2 посредством электромиграции. С емкостью для сбора и измерения концентрации разделенных компонентов 4, оптически соединяется измеритель концентраций компонентов смеси 6.

Устройство для реализации способа фотонной хроматографии оборудовано одним или несколькими источниками лазерного излучения 7. В качестве источника излучения могут быть использованы лазерные диоды или различных типы непрерывных лазеров.

Заявленный фотонно-хроматографический способ разделения веществ осуществляется следующим образом (фиг. 1). Исходная смесь представляет собой раствор из двух и более компонентов, которые необходимо разделить. Исходная смесь помещается в подвижную фазу (раствор) фотонного хроматографа. Подвижная фаза помещается в емкость для подачи разделяемой смеси компонентов 3 хроматографической колонки 2. Движение подвижной фазы через неподвижную фазу 1 хроматографической колонки 2 осуществляется посредством электромиграции при приложении электрического поля при помощи источника постоянного напряжения 5, соединенного с емкостью для подачи разделяемой смеси компонентов 3 и емкостью для сбора и измерения концентрации разделенных компонентов 4 хроматографической колонки 2. Движение подвижной фазы через неподвижную фазу 1 хроматографической колонки 2 может осуществляться также посредством капиллярных сил. Количество неподвижных фаз определяется количеством разделяемых компонентов. При прохождении через хроматографическую колонку 2 подвижная фаза облучается источником непрерывного оптического излучения 7 с длиной волны, обеспечивающей возбуждение молекул выбранного компонента смеси, а плотность мощности лазерного излучения превышает пороговое значение 5 Вт/см2. Облучение компонентов смеси происходит на всей длине неподвижной фазы 1 фотонного хроматографа. Для осуществления последовательного облучения лазерным излучением с длиной волны, обеспечивающей переход в возбужденное состояние атомов или молекул выбранных компонентов смеси, устройство оборудовано одним или несколькими источниками непрерывного лазерного излучения 7. К емкости для сбора и измерения концентрации разделенных компонентов 4 хроматографической колонки 2 механически присоединяется измеритель концентраций компонентов смеси 6, с помощью которого определяют значения концентрации разделенных компонентов.

В качестве конкретного примера предлагается реализация способа разделения методом фотонной хроматографии при помощи устройства (фиг. 2), в котором в качестве подвижной фазы используется полярная жидкость, например, этиловый спирт. Хроматографическая колонка 2 содержит неподвижную фазу 1. Хроматографическая колонка 2 представляет собой пластину из пористого боросиликатного стекла с невыщелочеными порами. Неподвижная фаза 1, представляет собой, созданную на указанной пластинке, канавку 8 длиной 1 см и толщиной 0,5 мм, полученную путем выщелачивания соляной кислотой. Канавка 8 изготавливается при помощи фотолитографии и последующего травления. В общем случае количество неподвижных фаз определяется количеством разделяемых компонентов. Для разделения смеси двух компонентов, приведенной в конкретном примере, используется одна неподвижных фаз. С обеих сторон от канавки 8 методом фотолитографии создают емкость для разделяемой смеси 3 и емкость для измерения концентраций разделенных компонентов 4 с диаметром в 5-10 мм, используемые в качестве резервуара для исходной смеси веществ и для сбора и измерения концентрации разделенных компонентов.

В качестве разделяемых компонентов применяются красители Родамин 6Ж и Цитозин. В качестве подвижной фазы хроматографа используется этиловый спирт. Для осуществления движения спиртового раствора через хроматографическую колонку 2 к емкости для разделяемой смеси 3 и емкости для измерения концентраций 4 прилагалось постоянное электрическое напряжение величиной не менее 500 В, при помощи источника постоянного напряжения 5. Область с неподвижной фазой 1 облучается лазерным излучением непрерывного источника излучения 7. В качестве источника излучения использовался полупроводниковый лазер с длиной волны 532 нм, что близко к пику поглощения Родамина 6Ж (см. фиг. 3). Спектр поглощения Цитозина в данном диапазоне длин волн не имеет пиков поглощения (фиг. 4). Для обеспечения требований по плотности мощности лазерного излучения лазерный луч фокусируется при помощи цилиндрической линзы 9. Концентрации веществ на выходе из хроматографической колонки измерялись при помощи измерителя концентраций компонентов смеси 6, в качестве которого использовали спектрофлуориметр Флуорат-02-Панорама. При облучении лазерным излучением скорость нарастания концентрации Родамина 6Ж существенно снизилась, при этом скорость нарастания концентрации Цитозина практически не изменилась (фиг. 5).

Таким образом, заявляемый способ позволяет разделять классы веществ, которые имеют близкие физические механизмы взаимодействия молекул и атомов с поверхностью, за счет стимуляции механизмов взаимодействия молекул с поверхностью неподвижной фазы посредством их возбуждения лазерным излучением. Также за счет стимуляции процессов адсорбции и увеличения числа актов взаимодействия молекул одного из компонентов, возбужденных лазерным излучением, предлагаемый способ позволяет повысить эффективность разделения, и как следствие, сократить время, затрачиваемое на процесс разделения и уменьшить длину хроматографической колонки. Также для осуществления движения подвижной фазы не требуется создания разности давлений, как в случае высокоэффективной жидкостной хроматографии, что ведет к удалению компрессионного блока и упрощению конструкции хроматографа в целом.

Хроматографический способ разделения компонентов смеси в растворе, включающий подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси, отличающийся тем, что разделяемые компоненты смеси представляют собой молекулы органических красителей, а в качестве неподвижной фазы используют прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов среду, а при прохождении через хроматографическую колонку контролируемой смеси ее последовательно облучают одним или несколькими источниками непрерывного лазерного излучения с длиной волны, соответствующей области поглощения одного из компонентов разделяемой смеси, а плотность мощности используемого лазерного излучения превышает пороговое значение 5 Вт/см2.



 

Похожие патенты:

Настоящее изобретение относится к способу определения цефотаксима методом обращенно-фазной высокоэффективной жидкостной хроматографии, включающему изократический режим элюирования с использованием хроматографической колонки, заполненной сорбентом с размером частиц 5 мкм, в качестве подвижной фазы используют смесь раствора ацетата аммония с ацетонитрилом, отличающийся тем, что хроматографическое разделение производится на колонке размером 250×3 мм, заполненной сорбентом С18, с использованием в качестве подвижной фазы смеси 0,02 М раствора ацетата аммония рН=4,7 с ацетонитрилом в соотношении 90:10 с применением ультрафиолетового детектора при длине волны 252 нм и объеме вводимой пробы 10 мкл.
Изобретение относится к области медицины и представляет собой способ диагностики степени тяжести гнойного холангита у больных механической желтухой с установлением оптимальной хирургической тактики лечения, заключающийся в обследовании больного, отличающийся тем, что в крови больного газохроматографическим методом определяют количество уксусной кислоты и при концентрации уксусной кислоты, равной 0,31-0,34 ммоль/л, устанавливают наличие легкой степени тяжести гнойного холангита, при которой билиарная декомпрессия не показана, при концентрации уксусной кислоты, равной 0,35-0,41 ммоль/л, устанавливают наличие средней степени тяжести гнойного холангита, при которой билиарная декомпрессия показана при отсутствии эффекта от терапевтического лечения, а при концентрации уксусной кислоты, равной 0,42 ммоль/л или более, устанавливают наличие тяжелой степени гнойного холангита, при которой показана неотложная билиарная декомпрессия.

Изобретение относится к газовой хроматографии и может быть использовано при анализе сложных смесей жидких нефтепродуктов. Способ хроматографического анализа смесей веществ и хроматограф для осуществления этого способа включают применение двух последовательно соединенных хроматографических колонок, при котором пробу анализируемой смеси вводят в поток газа-носителя на вход первой колонки и после перехода легких компонентов смеси, представляющих интерес для анализа, во вторую колонку поток газа-носителя переносят на вход второй колонки, продувают первую колонку частью потока газа-носителя с содержащимися в нем тяжелыми компонентами пробы с входа первой колонки в атмосферу и детектируют выходящие из второй колонки разделенные легкие компоненты смеси, далее после выхода легких компонентов, представляющих интерес для анализа, из второй колонки в детектор и их регистрации объемную скорость части потока газа-носителя, используемого для продувки первой колонки, увеличивают в 10-50 раз по сравнению с первоначальной скоростью продувки, введенная проба анализируемой смеси испаряется в испарителе и разделяется на первой колонке потоком газа-носителя на легкие и тяжелые компоненты, далее легкие и тяжелые компоненты переходят и разделяются на дополнительной третьей колонке, далее поступают в дополнительный детектор и регистрируются, после этого закрывают клапаны, расположенные на входе, и продувают первую и вторую колонку с содержащимися в них компонентами пробы частью потока газа-носителя, проходящего между первой и второй колонками, скорость газа-носителя во время продувки в 2-3 раза больше, чем во время анализа.

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств, и может быть использовано в лабораториях контроля качества предприятий нефтепродуктообеспечения.

Изобретение относится к хроматографическому анализу, может быть использовано для ионной хроматографии с химическим подавлением электропроводности подвижной фазы.

Изобретение относится к аналитической химии, конкретно к газовой хроматографии, и может быть использовано для анализа газовых смесей в различных отраслях: химической, нефтяной, газовой, нефтехимической, экологии.

Изобретение относится к санитарной токсикологии и может быть использовано для определения содержания фумаровой и малеиновой кислот в плазме крови методом высокоэффективной жидкостной хроматографии (ВЭЖХ).

Изобретение относится к области аналитической химии применительно к определению суммарного содержания однотипных органических соединений, в частности углеводородов.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ выделения 3-оксо-8-гидрокси-1,5,7α,4,8β(Н)-гвай-10(14),11(13)-диен-12,6-олида из надземной части василька шероховатого (Centaurea scabiosa L.) или василька ложнопятнистого (Centaurea pseudomaculosa (Dobrocz.)), заключающийся в экстракции измельченной надземной части указанных растений водой, очищенной при температуре 80°С в течение 1,5 ч, при масс.

Изобретение относится к области медицины, а именно к клинической фармакологии, и может быть использовано для количественного определения ликарбазепина в плазме крови для решения задач лекарственного мониторинга антиконвульсанта второго поколения при лечении парциальной эпилепсии.

Изобретение относится к области фотоэлектронной измерительной техники и касается способа формирования апертурной характеристики датчика позиции отдаленного источника излучения.

Изобретение относится к фотометрии и может быть использовано для контроля параметров элементов оптоволоконного тракта при настройке и ремонтно-профилактических работах.

Изобретение относится к технике измерения диаграмм направленности (ДН,) фотоприемных устройств -(ФПУ) с широкими полями зрения и позволяет повысить точность и скорость процесса измерения неравномерности ДН у ФПУ с широкими полями зрения.

Изобретение относится к области рационального использования природных ресурсов и может быть использовано в газодобывающей, газоперерабатывающей, газохимической и других отраслях промышленности.

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси. Разделяемые компоненты смеси представляют собой молекулы органических красителей. В качестве неподвижной фазы используют прозрачную для оптического излучения ультрафиолетового, инфракрасного и видимого диапазонов среду. При прохождении через хроматографическую колонку контролируемой смеси ее последовательно облучают одним или несколькими источниками непрерывного лазерного излучения с длиной волны, соответствующей области поглощения одного из компонентов разделяемой смеси. Плотность мощности используемого лазерного излучения превышает пороговое значение 5 Втсм2. Изобретение позволяет повысить эффективность разделения, сократить время, затрачиваемое на процесс разделения. 5 ил.

Наверх