Способ получения синтез-газа

Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, временем обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, временем обработки 1,0-8,0 ч при температуре 50-70°С, с образованием обработанной суспензии. Затем суспензию направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем. Диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии и проведение газификации полученной суспензии с получением третьего потока газа и водной суспензии сажи. Далее смешение первого потока газа со вторым и третьим потоками газа после отделения водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.

 

Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья.

Известен способ термохимической переработки биомассы для получения синтез-газа, заключающийся в загрузке измельченного сырья - биомассы в термохимический реактор, пиролизе биомассы без доступа воздуха до температуры термического разложения с образованием сопутствующих продуктов и синтез-газов, отводимых из реактора в циркулирующий поток и к потребителю. Процесс пиролиза в реакторе осуществляют при одновременном вводе в него теплоносителя на основе нагретых до температуры пиролиза газообразных продуктов, в качестве которых используют отводимые из циркулирующего потока синтез-газы, при этом используемый в процессе пиролиза теплоноситель дополнительно содержит пары воды и/или углекислый газ, последний из которых или воду вводят в поток газообразных продуктов до нагрева их до температуры пиролиза (RU 2464295, 2010).

Также известен способ получения газов из нефтяных остатков, включающий эмульгирование гудрона или битума с водой с образованием водно-гудроновой эмульсии, парокислородную газификацию эмульсии и очистку полученного синтез-газа (RU 41307, 2004).

Главным недостатком известных способов является использование в процессе получения синтез-газа только одного вида сырья, либо растительного происхождения, либо углеводородного.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения синтеза-газа из комбинированного сырья, состоящего из биомассы и тяжелой углеводородной фракции, заключающийся в смешивании биомассы с предварительно подогретой тяжелой углеводородной фракцией с получением смеси с заданной степенью влажности, измельчении полученной смеси и последующей подачей измельченной смеси в виде суспензии мелких частиц биомассы, диспергированных в тяжелой углеводородной фракции, на стадию газификации (RU 2455344, 2008).

Однако, указанный способ приводит к получению синтез-газа с соотношением Н2:СО не более 0,85-0,92 и не решает проблемы снижения сажеобразования.

Технической проблемой, на решение которой направлено настоящее изобретение, является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования.

Указанная проблема решается описываемым способом получения синтез-газа из тяжелого углеводородного и растительного сырья, включающий нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч с образованием обработанной суспензии, которую направляют газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии, проведение газификации полученной суспензии при 800-1400°С с получением третьего потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, смешение первого потока газа со вторым и третьим потоками газа после отделения от первого и второго потоков водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа.

Достигаемый технический результат заключается в реализации непрерывных деструктивных процессов на всех стадиях технологии во всем диапазоне температур, а также в расширении арсенала технологий получения синтез-газа из растительного и тяжелого углеводородного сырья.

Сущность способа заключается в следующем.

В качестве растительного сырья в описываемом способе возможно использовать любые остатки сельскохозяйственного производства, например, кукурузные кочерыжки и стебли, лузгу, жмых и шрот от переработки подсолнечника, стебли подсолнечника, рисовую шелуху, отходы производства льна и другие отходы, образующиеся при переработке сельскохозяйственного сырья растительного происхождения или их смеси.

Используемое тяжелое углеводородное сырье в рамках данной заявки представляет собой, в частности, разнообразные тяжелые нефтяные остатки (тяжелые нефтяные остатки (ТНО), такие, как, например, мазут, гудрон), тяжелые фракции нефти, вакуумные газойли, газойли в смеси с мазутом, битуминозная нефть, смолы пиролиза, асфальтосмолистые парафинистые отложения (АСПО), концентрированные нефтешламы с высоким содержанием нефтяной составляющей или их смесь.

Способ проводят следующим образом.

Проводят нагрев тяжелого углеводородного сырья до 60-90°С. Растительное сырье подвергают измельчению до степени помола не более 200 мкм, например, последовательно в дробилке до 1-3 мм и в мельнице до 100-200 мкм.

Измельченное растительное сырье подвергают пиролизу при 500-800°С, со скоростью подъема температуры ~10 град/мин и коэффициенте недостатка воздуха от 0,3-0,7 и получают первый поток газа, смолу и полукокс.

Далее полученную смолу смешивают с нагретым тяжелым углеводородным сырьем в соотношении, обеспечивающем получение текучей, при температуре смешения, среды и проводят диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи, образующейся в результате проведения последующей газификации, и воды с получением суспензии. Массовое соотношение тяжелого углеводородного сырья и смолы составляет, предпочтительно, 7-4:1. Количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет, предпочтительно, 10-30% от массы смеси.

Температура диспергирования составляет 60-90°С. Возможно проведение процесса непрерывно, в проточных условиях. Используют различные типы проточных диспергаторов. Скорость вращения дисков диспергатора, предпочтительно, составляет от 1400 до 6000 об в минуту. Зазор между дисками, предпочтительно, составляет 1,5-5,0 мм. При этом происходит не только гомогенизация компонентов смеси, но и активация последних, приводящая, в частности, к образованию новых макрорадикалов, способствующих ускорению течения процессов деструкции, а также активированию инертного компонента - воды. Таким образом, использование указанного процесса диспергирования (механоактивации) приводит, в том числе, к переводу используемой воды в мелкодисперсное активное состояние. При этом средний размер частиц воды, диспергированной в углеводородной смеси составляет 5-20 мкм.

Полученную в результате механоактивации суспензию подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч.

Обработанную вышеуказанным образом суспензию подвергают газификации при 800-1400°С, содержании кислорода в дутье от 20 до 95% об. и коэффициенте недостатка воздуха, равном 0,3-0,5 и получают второй поток газа, содержащий сажу. Образуется также мелкозернистый зольный остаток.

В описываемом способе процесс газификации может быть проведен традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. При проведении газификации использование пара не рекомендуется вследствие наличия в используемой суспензии воды в мелкодисперсном состоянии. Указанная вода становится реакционно-активной в процессе газификации, так как способствует явлению микровзрыва, распыляет и активно газифицирует асфальто-смолистые, смолистые вещества, находящиеся в используемом сырье, что позволяет снизить смоло- и сажеобразование.

Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет, предпочтительно, 10-30% от массы смеси. Температура диспергирования составляет, предпочтительно, 60-90°С. Возможно проведение процесса непрерывно, в проточных условиях. Используют различные типы проточных диспергаторов. Скорость вращения дисков диспергатора, предпочтительно, составляет от 1400 до 6000 об в минуту. Зазор между дисками, предпочтительно, составляет 1,5-5,0 мм. В результате получают суспензию, с размерами частиц полукокса 5-20 мкм

Затем полученную суспензию подвергают газификации при 800-1400°С, содержании кислорода в дутье от 20 до 95% об. и коэффициенте недостатка воздуха, равном 0,3-0,5 и получают третий потока газа, содержащий сажу.

В описываемом способе процесс газификации может быть проведен традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. При проведении газификации использование пара не рекомендуется вследствие наличия в используемой суспензии воды в мелкодисперсном состоянии.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи.

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

В зависимости от типа дутья, состав газовой смеси после очистки меняется: с повышением количества кислорода с 20 до 95% уменьшается количество азота в газовой смеси с 55-60% до 1,5-3,0% и, соответственно, возрастает объемное соотношение Н2:СО до 2,2-2,5:1

Ниже приведены примеры, иллюстрирующие, но не ограничивающие изобретение.

Пример 1.

В качестве тяжелого углеводородного сырья используют тяжелый нефтяной остаток - мазут, в качестве растительного сырья - кукурузные кочерыжки.

Исходный мазут нагревают до 60°С. Кукурузные кочерыжки подвергают двухстадийному измельчению последовательно в дробилке до среднего размера 1-3 мм и мельнице до степени помола 150 мкм.

Измельченное растительное сырье подвергают пиролизу при температуре 700°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола и полукокс.

Состав газа (без учета азота) следующий, об. %: Н2 - 12,3; СН4 - 39,9; С2Н6 - 1,0; СО - 22,4; - 24,5. Состав смолы: н.к. - 40°С; фракция н.к. - 180°С - 20,2%; 180-240°С - 28,7%; 240-300°С - 19,3%; 300-360°С - 13,3%; 360 - к.к. к.к. - 450°С - 18,5%. Выход продуктов, мас. %: полукокс - 50,0; вода - 21,5; смола - 12,0; газ + потери - 16,5.

Далее смешивают нагретый мазут и смолу (массовое соотношение компонентов составляет 7:1) Полученную смесь подвергают диспергированию (механоактиваций в диспергаторе) в присутствии водной суспензии сажи (содержание сажи 1,5% масс), образующейся в результате проведения последующего процесса газификации, и воды. Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 10% от массы смеси.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц воды, диспергированной в углеводородной составляющей составляет 5-20 мкм.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 25 кГц, интенсивностью излучения 9 Вт/см2 при температуре 60°С, времени обработки 2,5 ч и затем электромагнитной обработке с частотой излучения 60 МГц, мощностью 0,2 кВт при температуре 60°С, времени обработки 6,0 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 800°С, без использования давления. Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи (количество сажи 1,2% масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса, составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. При этом на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+ Н2) составляет 34,2%. Количество образующейся сажи составляет 1,2% масс.

Пример 2.

В качестве тяжелого углеводородного сырья используют мазут, в качестве растительного сырья - шелуху гречки.

Исходный мазут нагревают до 70-75°С.

Шелуху гречки подвергают двухстадийному измельчению последовательно в дробилке и мельнице до степени помола 170 мкм.

Измельченное растительное сырье подвергают пиролизу при температуре 600°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола в количестве 15% масс и полукокс в количестве 45% масс.

Далее нагретый мазут и образующуюся при пиролизе смолу смешивают (массовое соотношение компонентов составляет 4:1, соответственно). Полученную смесь подвергают диспергированию (механоактивации) в присутствии водной суспензии сажи (содержание сажи 1,2%масс) и воды. Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 15% от массы смеси. При этом используют водную суспензию сажи, образующуюся в результате проведения последующей газификации.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц воды, диспергированной в углеводородной составляющей составляет 5-20 мкм.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 21,3 кГц, интенсивностью излучения 7,8 Вт/см2 при температуре 60°С, времени обработки 3 ч и затем электромагнитной обработке с частотой излучения 49,5 МГц, мощностью 0,25 кВт при температуре 60°С, времени обработки 4 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 1000°С, при атмосферном давлении. В качестве дутья используют воздух, обогащенный кислородом с содержанием кислорода 49,5%.

Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, с отделением водной суспензии сажи (количество сажи 1,2% масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. При этом на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+Н2) составляет 68%. Количество образующейся сажи составляет 1,2% масс.

Пример 3.

В качестве тяжелого углеводородного сырья используют гудрон, в качестве растительного сырья - лузгу подсолнечника.

Измельченное растительное сырье подвергают пиролизу при температуре 650°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола (20%масс) и полукокс (40%масс).

Далее нагретый гудрон и образующуюся при пиролизе смолу, смешивают (массовое соотношение компонентов составляет 4:1, соответственно). Полученную смесь подвергают диспергированию (механоактивации в диспергаторе) в присутствии водной суспензии сажи (содержание сажи 1,7%). Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 20% от массы смеси.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 23,5 кГц, интенсивностью излучения 5 Вт/см2 при температуре 60°С, времени обработки 1 час и затем электромагнитной обработке с частотой излучения 40 МГц, мощностью 0,6 кВт при температуре 60°С, времени обработки 8 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 1200°С без использования давления. В качестве дутья используют технический кислород.

Образующийся при газификации второй поток газа охлаждают, подвергают очистке с отделением водной суспензии сажи (количество сажи составляет 1,7. % масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+ Н2) составляет 92%, объемное соотношение Н2:СО в синтез - газе составляет 2,1:1 Количество образующейся сажи составляет 1,7% масс.

Использование при проведении описываемого способа получения синтез-газа иных режимных условий, не выходящих за рамки заявленных, приводит к аналогичным результатам, а использование указанных условий, отличных от заявленных, не приводит к желаемым результатам.

Таким образом, описываемый способ получения синтез-газа за счет проведения комплекса деструктивных процессов позволяет повысить соотношение Н2:СО в синтез-газе до 1,1-1,3 по сравнению с известным Н2:СО, равным 0,85-0,92 и снизить количество образующейся сажи - до 1,2-1,7% по сравнению с известным 2,5-4%. Кроме того, описываемый способ позволяет расширить арсенал технологий получения синтез-газа из растительного и тяжелого углеводородного сырья.

Способ получения синтез-газа из тяжелого углеводородного и растительного сырья, включающий нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч с образованием обработанной суспензии, которую направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии, проведение газификации полученной суспензии при 800-1400°С с получением третьего потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, смешение первого потока газа со вторым и третьим потоками газа после отделения от первого и второго потоков водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа.



 

Похожие патенты:

Изобретение относится к технологии получения синтез-газа для малотоннажного производства метанола. Способ осуществляется путем парциального окисления углеводородных газов (УВГ) при давлении 6,0-7,0 МПа в газогенераторе, оборудованном узлами ввода УВГ и окислителя.

Изобретение относится к способам и устройствам для газификации угля сильно перегретым водяным паром для его конверсии в топливный газ или синтез-газ. Способ включает подачу угольных частиц и перегретого водяного пара в зону газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, отвод продуктов газификации потребителю и удаление зольного остатка.

Изобретение относится к синтезу Фишера-Тропша. Способ проведения синтеза Фишера-Тропша включает хлорщелочной процесс, при этом в целом способ включает: 1) газификацию исходного материала с целью получения сырого синтез-газа для синтеза Фишера-Тропша, содержащего Н2, СО и СО2; 2) электролиз насыщенного раствора NaCl с использованием промышленного хлорщелочного процесса с целью получения раствора NaOH, Cl2 и H2; 3) удаление СО2 из сырого синтез-газа с использованием раствора NaOH, полученного на стадии 2), с целью получения чистого синтез-газа или на стадии 3) СО2 сначала отделяют от сырого синтез-газа с получением чистого синтез-газа, а затем СО2 абсорбируют водным раствором NaOH, полученным на стадии 2); 4) вдувание Н2, полученного на стадии 2), в чистый синтез-газ с целью регулирования молярного отношения СО/Н2 в чистом синтез-газе так, чтобы оно удовлетворяло требованиям реакции синтеза Фишера-Тропша, и затем осуществляют производство соответствующих жидких углеводородов и парафиновых продуктов.

Изобретение относится к области энергетики. Способ сжигания углеводородного сырья (13) посредством химического цикла окисления-восстановления заключается в том, что редокс-активная масса в виде частиц циркулирует между зоной окисления (200) и зоной восстановления (210), образуя контур, причем углеводородное сырье (13) сжигают, приводя в контакт с частицами редокс-активной массы в зоне восстановления (210); частицы редокс-активной массы, выходящие из зоны восстановления (210), окисляют, приводя в контакт с потоком окислительного газа (11) в зоне окисления (200); частицы подают в по меньшей мере один теплообменник (E1), находящийся на линии переноса частиц (15, 16, 17, 18) между зоной восстановления (210) и зоной окисления (200), и сжижающий газ направляют в указанный теплообменник, чтобы создать плотный псевдоожиженный слой, содержащий частицы активной массы, причем указанный теплообменник имеет поверхность теплообмена в контакте с псевдоожиженным слоем; рекуперацию тепла в по меньшей мере одном теплообменнике (E1) регулируют, изменяя уровень псевдоожиженного слоя путем контролируемого создания спада давления на отводе сжижающего газа, расположенном в верхней части теплообменника, причем созданный спад давления компенсируется изменением уровня слоя частиц активной массы в коллекторной зоне, находящейся на контуре частиц в химическом цикле.

Изобретение относится к области термохимической переработки и утилизации твердых веществ, содержащих углеводороды, и может найти применение в установках газификации веществ, содержащих углеводороды.

Изобретение относится к способу получения из растительной биомассы, который может быть использован в энергетике и в ряде химических производств. Способ осуществляют путем прохождения перерабатываемой биомассы стадии пиролиза в секции, нагреваемой до температуры 600°С, а выделяющиеся в процессе термического распада биомассы летучие продукты пиролиза фильтруются через образовавшийся на стадии пиролиза угольный остаток во второй независимо нагреваемой секции при температуре 1000°С.

Изобретение относится к способу и устройству производства синтез-газа. Способ производства синтез-газа (5) осуществляется посредством парового риформинга, при котором для получения обедненного азотом загружаемого сырья (4) для парового риформера (D), обогреваемого горелкой, из исходного вещества (1), содержащего углеводороды и азот, выделяют азот с образованием содержащего углеводороды остаточного газа (2), который впоследствии служит топливом (6).

Изобретение относится к способу уменьшения образования агломератов во время термического разложения сырья из углеродсодержащих материалов. Описан способ некаталитического термического разложения, включающий: подачу в общем твердого сырья в установку термического разложения; перемещение сырья через по меньшей мере одну зону газификации в установке термического разложения при помощи устройства для перемещения и подачу кислорода и необязательно дополнительного газа в зону газификации, причем кислород и необязательно дополнительный газ подается к устройству для перемещения и выходит на поверхности устройства для перемещения; причем сырье перемещают через зону газификации и кислород подают в зону газификации со скоростями, эффективными для поддержания температуры слоя материала, не превышающей 2300°F в любой точке в слое материала, и для поддержания температуры слоя материала от 500 до 2000°F.
Изобретение относится к способу производства жидкого топлива. Способ включает: а) конверсию твердого углеродсодержащего материала в блоке газификации с образованием сингаза газификатора; b) проведение сингаза газификатора в блок обработки газа и обработку в нем сингаза газификатора, при этом указанный блок обработки газа включает в себя блок удаления кислого газа, предназначенный для удаления менее 50% CО2, присутствующего в сингазе газификатора; c) образование по меньшей мере потока обработанного сингаза газификатора, содержащего по меньшей мере 50% CО2 сингаза газификатора, газового потока, обогащенного CО2, и потока, обогащенного серой; d) использование по меньшей мере 90% обогащенного CО2 газового потока при образовании сингаза газификатора; e) конверсию легкого ископаемого топлива в блоке конверсии легкого ископаемого топлива с образованием обогащенного H2 сингаза, содержащего H2 и CO в молярном отношении H2/CO по меньшей мере 2:1; f) объединение обработанного сингаза газификатора и обогащенного H2 сингаза с образованием смешанного сингаза, имеющего более высокое отношение Н2/СО, чем в потоке обработанного сингаза газификатора; g) конверсию смешанного сингаза с образованием жидкого топливного продукта и потока побочного продукта, содержащего одно или более веществ из водорода, CO, водяного пара, метана и углеводородов, содержащих 2-8 атомов углерода и 0-2 атомов кислорода; и h) реакцию до 100% потока побочного продукта в блоке конверсии легкого ископаемого топлива, чтобы способствовать образованию обогащенного H2 сингаза.

Изобретение относится к способу получения синтез-газа из парникового газа - диоксида углерода (CO2) путем каталитической конверсии его в синтез-газ и горючий газ. Способ осуществляется посредством гидрогенизационной конверсии CO2 путем контактирования реакционной смеси, содержащей водород (H2) и CO2, с неподвижным слоем катализатора, представляющим собой металл, нанесенный на носитель, при повышенной температуре.

Изобретение относится к технологии ожижения органической массы угля при глубокой переработке угля. Способ деструкции органических соединений угольного сырья в среде органического растворителя включает одновременное или последовательное экстремальное физическое воздействие на деструктурируемое сырье волновыми гидродинамическими ультразвуковыми и электромагнитными полями с энергией и частотами, соответствующими резонансным частотам и/или частоте колебаний молекул деструктурируемых органических соединений с последующим температурным воздействием в пределах атмосферной перегонки.

Изобретение относится к способу облагораживания светлых нефтепродуктов для получения из них зимнего дизельного топлива с установлением оптимальных параметров при их облагораживании путем регулирования параметров кавитационного воздействия и деструктивного гидрирования (гидрогенизации), связанных с таким показателем целевого продукта как температура его помутнения и анализа промежуточных проб из каждого аппарата кавитационного воздействия и гидрогенизатора, определяемых по результатам ИК-спектроскопии и методов физико-химического анализа охлажденных проб продуктов до и после каждого аппарата кавитационного воздействия и аппарата гидрогенизации, при котором сначала исходный продукт подвергают вышеуказанному анализу, далее с помощью блока управления и безопасности устанавливают в акустическом кавитаторе с магнитострикционным излучателем ультразвуковых колебаний и гидрогенизаторе начальные параметры их работы.
Изобретение относится к способу получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья.

Настоящее изобретение относится к способу улучшения низкотемпературных свойств нефтепродуктов, в том числе дизельного топлива и рабочих жидкостей гидросистем, что позволяет применять их при эксплуатации автотракторной техники в условиях пониженных температур.

Описаны способ магнитной активации жидких высокомолекулярных углеводородов, в котором для создания магнитного поля в жидкости, протекающей по диамагнитной трубе, пропускают импульсы тока по проводникам, расположенным в потоке жидкости, и устройство для реализации данного способа, в котором формирователи магнитного поля находятся вне трубы, а внутри трубы установлены металлические проводники, изолированные концы которых выведены наружу трубы и через управляемые коммутаторы подключены к импульсным источникам электроэнергии.

Изобретение относится к способу непрерывной мгновенной конверсии смеси тяжелых ископаемых углеводородов (ТИУ), включающей одно или более из битума, угля любого вида, нефтяных песков, горючих сланцев, нефтяных смол, асфальтенов и предасфальтенов, а также любых других керогенсодержащих материалов.

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением.

Изобретение относится к утилизации углеродсодержащих смесей и может быть использовано при утилизации промышленных, сельскохозяйственных, производственных и бытовых отходов, содержащих твердые и жидкие углеводороды, для получения из них синтетического жидкого топлива как источника энергии.

Изобретение относится к области нефтепереработки, в частности к извлечению металлов из тяжелого нефтяного сырья, и может быть использовано при обогащении углеродсодержащего сырья различного происхождения.
Изобретение относится к способу переработки серосодержащего нефтешлама с высоким содержанием воды, включающему предварительное смешение нефтешлама с углеводородным растворителем, активирование полученного продукта воздействием на последний электромагнитным излучением с частотой 40-55 МГц, мощностью 0,2-0,6 кВт, при продолжительности активации 1-8 ч и температуре 40-70°C, отделение от активированного продукта углеводородной, водной и твердой фаз, отгонку из углеводородной фазы углеводородного растворителя и проведение гидрокрекинга, полученного при отгонке углеводородного компонента в присутствии цеолитсодержащего катализатора при температуре 400-500°C, давлении водорода 50-100 атм, в течение 2,0-3,0 часов с получением целевого нефтепродукта.

Изобретение относится к способу обработки материала на основе лигнина. Способ включает обработку лигнина, извлеченного из лигноцеллюлозного сырья способом гидротермальной карбонизации при повышенной температуре, в результате чего получают карбонизированный лигнин с повышенным содержанием углерода, и стабилизацию полученного карбонизированного лигнина в инертной атмосфере при температуре проведения стабилизации, которая превышает температуру осуществления способа гидротермальной карбонизации.

Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Втсм2, временем обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, временем обработки 1,0-8,0 ч при температуре 50-70°С, с образованием обработанной суспензии. Затем суспензию направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем. Диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии и проведение газификации полученной суспензии с получением третьего потока газа и водной суспензии сажи. Далее смешение первого потока газа со вторым и третьим потоками газа после отделения водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.

Наверх