Установка рулонного типа для синтеза графена

Изобретение относится к области нанотехнологий. Установка рулонного типа для синтеза графена включает блок подготовки газовой смеси 5, блок откачки 6, вакуумную рабочую камеру 1 с подогреваемым щелевым соплом 2, на выходе из которого реализуется ламинарное течение, перфорированную по краям ленточную металлическую подложку 3, систему нагрева-охлаждения 4 с контуром водяного охлаждения и нагревателем, систему перемещения подложки с прижимными роликами и зубчатыми колесами, приводимыми в движение шаговым двигателем 7 с механизмом реверса. Изобретение позволяет получить однослойные графеновые покрытия высокого качества с минимальным количеством дефектов. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к области нанотехнологий. Изобретение относится к области получения новых углеродных материалов методом химического осаждения из паровой фазы (CVD) на металлическую подложку.

Известна установка рулонного типа для производства графена [US 2015010701 (А1) - 2015-01-08, С23С 16/02; С23С 16/26; С23С 16/46; С23С 16/54; С23С 16/56], включающая последовательно расположенные: валик подачи металлической подложки в блок предварительной обработки; блок предварительной обработки поверхности металлической подложки; блок формирования графена; охлаждающий блок, который служит для охлаждения подложки, покрытой графеном; валик, который собирает металлическую подложку, покрытую графеном в рулон после того, как металлическая подложка проходит через блок формирования графена. Металлическая подложка может быть выполнена в форме трубы, пластины, листа, проволоки или фольги. Предварительную обработку (нагрев) подложки в блоке предварительной обработки осуществляют с использованием плазмы, лазера, или их комбинации. Блок формирования графена включает одно или несколько газовых сопел и регулируемый источник нагрева. Расположение газовых сопел относительно подложки позволяет синтезировать графен как на одной стороне подложки, так и на обеих. На входе и выходе составляющих блоков установки предусмотрены ролики для минимизации или предотвращения изгиба металлической подложки, а также функцию сохранения градиента температуры стабильным. Кроме того, ролики могут служить для охлаждения металлической подложки.

В указанной установке на качество синтезируемого графена, ухудшая его, будут влиять следующие факторы:

1 - расположение роликов и подложки вне камеры;

В указанной установке не исключен контакт подложки с нанесенным на нее слоем графена с атмосферой до полного остывания,

2 - использование лазера или плазмы;

При использовании плазмы возможны процессы ионизации и взаимодействие высокоэнергетических частиц с формирующейся графеновой плоскостью, что может приводить к образованию дефектов в графеновых плоскостях.

3 - не прогреваемое сопло;

Обдув подложки прогретой газовой смесью в случае прогреваемого сопла позволяет получить температуру смеси выше температуры подложки, что способствует получению графена высокого качества.

При прогреве газа через контакт с металлической (медной) поверхностью температуру подложки надо поддерживать выше, чем в случае прогреваемого сопла, а перегрев подложки приводит к потере механических свойств подложки, так как рабочие температуры синтеза очень близки к температуре плавления.

4 - отсутствие реверса.

Реверс позволяет совмещать предварительную обработку подложки и синтез.

Наиболее близкой по совокупности признаков и получаемому результату является установка для производства графена с использованием технологии рулонного типа [KR 20160126819 (А) - 2016-11-02, B01J 19/08; B01J 19/28; С01В 31/04], содержащая основную камеру, которая включает:

1 - светопропускающее окно;

2 - камеру подачи с валиком подающим подложку в основную камеру,

3 - камеру рекуперации, в которой размещен регенерационный валик для извлечения каталитической подложки, проходящей через внутреннюю часть основной камеры;

4 - источник инфракрасного излучения, который установлен на внешней стороне светопропуекающего окна основной камеры;

5 - подложку, проходящую через внутреннюю часть основной камеры вблизи светопропускающего окна;

6 - клапан подачи реакционного газа в основную камеру.

Камера подачи и камера рекуперации расположены на противоположных сторонах основной камеры.

В указанной установке источник инфракрасного излучения расположен на внешней стороне светопропускающего окна основной камеры. В результате КПД будет ниже. Расстояние нагреватель-подложка - больше, следовательно, области градиента температуры более размыты (прогрев и охлаждение подложки происходят на большем расстоянии и более длительное время), т.е. подложка более длительное время находится в режимах неоптимальных для роста графена, что может влиять на качество графена. Также в указанной установке не предусмотрен предварительный прогрев газа (не прогреваемое сопло), что также влияет на качество графена, приводя к образованию дефектов в слое графена.

Задачей, на решение которой направлено настоящее изобретение, является разработка установки рулонного типа для синтеза однослойных графеновых покрытий высокого качества, имеющих минимальное количество дефектов.

Поставленную задачу решают путем использования для синтеза графена установки рулонного типа, включающей вакуумную рабочую камеру с перфорированной по краям ленточной металлической подложкой и щелевым прогреваемым соплом, на выходе из которого реализуется ламинарное течение, систему нагрева-охлаждения с контуром водяного охлаждения и нагревателем подложки с источником инфракрасного излучения, систему перемещения ленточной металлической подложки с прижимным роликом шириной равной ширине подложки, и установленными по краям перфорированной металлической подложки двумя зубчатыми колесами,

Согласно изобретению внутри сопла установлена диафрагма с отверстием предпочтительно диаметром от 0,1 см до 1,5 см, вокруг сопла навит в виде спирали между керамическими держателями нагреватель, вокруг нагревателя установлен защитный экран, выполненный в виде плоской изогнутой в форме цилиндра пластины.

Согласно изобретению нагреватель подложки с источником инфракрасного излучения установлен в непосредственной близости от подложки таким образом, что ширина зоны синтеза графена равна ширине подложки.

Согласно изобретению прижимной ролик и зубчатые колеса выполнены с противоположных сторон зоны синтеза графена.

Согласно изобретению шаговый двигатель, приводящий в движение зубчатые колеса, оснащен механизмом реверса.

Согласно изобретению ленточная металлическая подложка, щелевое прогреваемое сопло, система нагрева-охлаждения с контуром водяного охлаждения и инфракрасным нагревателем и система перемещения ленточной металлической подложки с прижимным роликом и двумя зубчатыми колесами размещены внутри вакуумной рабочей камеры.

Согласно изобретению в качестве материала для сопла используют нержавеющую сталь, молибден, титан.

Согласно изобретению в качестве материала для подложки используют медь.

Согласно изобретению прижимной ролики и движущие зубчатые колеса системы перемещения ленточной металлической подложки выполняют из термостойких материалов.

Техническая сущность изобретения поясняется фигурами.

На фигуре 1 схематично изображена установка рулонного типа для синтеза графена.

На фигуре 2 схематично изображено прогреваемое щелевое сопло.

На фигуре 3 схематично изображены система нагрева-охлаждения и система перемещения подложки.

Где: 1 - вакуумная рабочая камера; 2 - прогреваемое щелевое сопло; 3 - система перемещения подложки; 4 - система нагрева-охлаждения; 5 - блок подготовки газовой смеси; 6 - блок откачки; 7 - шаговый двигатель с механизмом реверса; 8 - диафрагма; 9 - нагреватель; 10 - защитный экран; 11 - керамические держатели; 12 - перфорированная ленточная металлическая подложка; 13 - контур водяного охлаждения; 14 -нагреватель; 15 - прижимной ролик; 16 - движущие зубчатые колеса; 17 - зона синтеза графена.

Установка включает вакуумную рабочую камеру 1, блок подготовки газовой смеси 5; блок откачки 6, шаговый двигатель с механизмом реверса 7. В вакуумной рабочей камере 1 установки размещены прогреваемое щелевое сопло 2, система перемещения подложки 3, система нагрева-охлаждения 4.

Прогреваемое щелевое сопло 2 включает диафрагму 8, нагреватель 9, керамические держатели 11 и защитный экран 10. Наличие внутри щелевого сопла диафрагмы с отверстием позволяет эффективно перемешивать газы-прекурсоры и получать однородный по составу и температуре поток на выходе. Однородность по составу и температуре влияет на однородность качества графена. Вокруг щелевого сопла размещен нагреватель, навитый в форме спирали между керамическими держателями, выполненный из прецизионного сплава с высоким электрическим сопротивлением, например Х23Ю5Т. Нагреватель служит для подогрева газа до температуры 950-1100°С в условиях рабочего давления 10-100000 Па. Для увеличения КПД, вокруг нагревателя установлен защитный экран 10. Защитный экран выполнен из металлической пластины, изогнутой в форме цилиндра и установленной так, что нагреватель с керамическими держателями и сопло находятся внутри цилиндра. Из соображений температурной стойкости в качестве материала для сопла можно использоваться нержавеющую сталь, молибден, титан. Прогреваемое щелевое сопло дает возможность предварительного прогрева газа, в том числе до температур выше, чем температура подложки, увеличивая тем самым его реакционную способность. Увеличение температуры приводит к увеличению подвижности молекул газа на поверхности меди и уменьшению количества дефектов в формирующемся графене. Если нагреть подложку до 1070°С она начнет плавиться (потечет), а не потянется, поэтому недогретую подложку обдувают горячим газом, повышая локально температуру в зоне роста графена. Следовательно, можно растить графен при более высоких температурах, а температура главный параметр обеспечивающий качество графена. Обдув подложки прогретой газовой смесью позволяет решить проблему протяжки подложки при достижении наиболее эффективной температуры синтеза графена. Например, наиболее хорошо графен растет на медной подложке при температуре подложки близкой к температуре плавления меди, но при такой температуре медь теряет жесткость и подложку невозможно протягивать.

Система перемещения подложки 3 включает перфорированную ленточную металлическую подложку 12, прижимной ролик 15 и два движущих зубчатых колеса 16. Прижимной ролик и зубчатые колеса расположены в вакуумной рабочей камере 1 на противоположных от зоны синтеза графена 17 сторонах. Ленточная подложка выполнена из металлической фольги, предпочтительно медной, и перфорирована по краям. При помощи зубчатых колес, установленных по краям перфорированной ленточной металлической подложки, производят перемотку ленточной подложки. Зубчатые колеса создают натяжение подложки и выравнивают деформации, возникающие в результате термического воздействия на подложку. Колеса располагают по краям подложки, чтобы не дотрагиваться до нанесенного на подложку графена и не сдирать его. Материал зубчатых колес - широко используемая в вакуумной технике нержавеющая сталь. Данный сплав является корозионно-стойким, а так же обладает низкой скоростью газовыделения: порядка 10-8-10-9 л*торр/(с*м2). Прижимным роликом осуществляют прижим подложки по всей ширине подложки без опасности стереть нанесенный слой графена, так как ролик установлен в области, где на подложку графен еще не нанесен. В результате происходит эффективное выравнивание деформированной подложки и улучшается теплообмен с охлаждаемой частью. Так как все части системы находятся вблизи прогреваемой области и нагреваются до 300-400 С, они выполнены из термостойких материалов. Металлическая подложка, прижимной ролик и перемещающие подложку зубчатые колеса установлены в вакуумной рабочей камере, что исключает контакт металлической подложки с нанесенным на нее слоем графена с атмосферой до полного остывания. Вращение зубчатых колес производится шаговым двигателем 7 с механизмом реверса, расположенным снаружи вакуумной камеры. Двигателем осуществляется торможение и реверс движения подложки. Реверс позволяет совмещать предварительную обработку подложки и синтез графена. Предварительная обработка подложки (удаление оксидного слоя) происходит при обдуве через сопло водородом при температуре 1050 С, синтез происходит при обратной протяжке подложки и обдуве смесью Ar+CH4+Н2.

Система нагрева-охлаждения 4 включает контур водяного охлаждения 13 и нагреватель 14. Нагрев подложки 12 производят нагревателем 14, который располагают внутри рабочей вакуумной камеры 1 в непосредственной близости от подложки, что позволяет достичь высокой эффективности осаждения графена. В качестве нагревателя предпочтительно использовать источник инфракрасного излучения, галогенную лампу или любой другой нагреватель инфракрасного излучения. Установка источника инфракрасного излучения внутри вакуумной рабочей камеры позволяет получать КПД выше, чем при установке источника вне камеры, а, следовательно, графен будет дешевле.

Ширина зоны синтеза графена 17 составляет порядка ширины подложки преимущественно равна ширине подложки.

Охлаждение производят проточной водой. Контур водяного охлаждения позволяет снимать тепловую нагрузку с подложки вне зоны синтеза графена. Вне зоны синтеза графена при максимальных режимах работы нагревателя температура подложки достигает 300-400 С.

Все части конструкции установки выполнены из термостойкого материала.

Установка рулонного типа для синтеза графена работает следующим образом.

1. Ленточную подложку, выполненную из медной фольги, закрепляют прижимным роликом системы перемещения подложки. Прижим ленточной подложки предотвращает деформации при протяжке (позволяет поднять температуру синтеза, соответственно, в графене меньше дефектов и он однослойный).

2. Реактор вакуумируют и заполняют водородом до давления 10-100000 Па.

3. Включают прогрев щелевого сопла до температуры 950-1100°С и прогрев подложки источником инфракрасного излучения.

4. Включают расход водорода через сопло.

5. Включают протяжку ленточной подложки со скоростью 10-200 мм/мин. Перемотку ленточной подложки производят при помощи зубчатых колес системы перемещения подложки. На первой прогонке отжигают подложку в водороде. Отжиг в водороде восстанавливает оксидный слой на поверхности подложки, разглаживает поверхность, укрупняет зерна меди. Все это, к конечном итоге, приводит к улучшению качества графена.

6. Включают расход газовой смеси через сопло для синтеза графена.

7. Включают обратную протяжку ленточной подложки со скоростью 10-200 мм/мин и осуществляют синтез графена.

8. По окончании процесса синтеза выключают источники инфракрасного излучения и обогрева сопла, откачивают камеру, заполняют ее аргоном до атмосферного давления, открывают камеру и достают подложку с графеном.

В экспериментах синтез графена проводился в следующих условиях: температура подложки 1050°С, температура сопла 1070°С, состав и расход смеси Ar - 89 н.см3/мин, H2 - 20 н.см3/мин, СН4 - 0,22 н.см3/мин, скорость протяжки для однослойного - 1 см/мин, для несколькослойного - 0,5 см/мин. Предварительный отжиг подложки проводился при температуре 1070 С в протоке Н2 с расходом 100 н.см2/мин, в течение 1 часа. В качестве подложки, использовалась медная фольга фирмы AlfaAesar, толщиной 25 мкм и чистотой 99,8%.

На фигуре 4 представлены данные спектроскопии комбинационного рассеяния полученных образцов графеновых покрытий; 1 - однослойных; 2 - несколькослойных.

В полученных спектрах присутствуют пики D, G, 2D, характерные для графитовых структур. Из фигуры 4 видно, что в образцах интенсивность D пика очень слабая (для многослойного образца на уровне шума), таким образом, полученные графеновые покрытия имеют малое количество дефектов ID/IG<0,07. Полуширина 2D линии, а также отношение между интенсивностями 2D и G пиков соответствуют параметрам однослойного и 2-3 слойного графена (однослойный: G - 1578 см-1, полуширина - 28 см-1, 2D - 2677 см-1, полуширина - 39 см-1, несколькослойный: G - 1578 см-1, полуширина - 25 см-1, 2D - 2695 см-1, полуширина - 70 см-1).

1. Установка рулонного типа для синтеза графена, включающая вакуумную рабочую камеру с соплом и ленточной металлической подложкой, систему нагрева-охлаждения с контуром водяного охлаждения и нагревателем подложки с источником инфракрасного излучения, систему перемещения ленточной металлической подложки с прижимными роликами и шаговый двигатель, отличающаяся тем, что сопло, на выходе из которого реализуется однородный по составу и температуре поток, имеет щелевую форму, внутри сопла установлена диафрагма с отверстием, вокруг сопла навит в виде спирали между керамическими держателями нагреватель, вокруг нагревателя установлен защитный экран, выполненный в виде плоской изогнутой в форме цилиндра пластины, ленточная металлическая подложка выполнена перфорированной по краям, система перемещения ленточной металлической подложки включает выполненные с противоположных сторон зоны синтеза графена прижимной ролик шириной, равной ширине подложки, и установленные по краям перфорированной металлической подложки два зубчатых колеса, нагреватель подложки с источником инфракрасного излучения установлен в непосредственной близости от подложки таким образом, что ширина зоны синтеза графена преимущественно равна ширине подложки, шаговый двигатель, приводящий в движение зубчатые колеса, оснащен механизмом реверса, при этом щелевое прогреваемое сопло, система нагрева-охлаждения и система перемещения ленточной металлической подложки размещены внутри вакуумной рабочей камеры.

2. Устройство по п. 1, отличающееся тем, что диаметр отверстия в установленной внутри щелевого прогреваемого сопла диафрагме составляет предпочтительно от 0,1 см до 1,5 см.

3. Устройство по п. 1, отличающееся тем, что в качестве материала для сопла используют нержавеющую сталь, молибден, титан.

4. Устройство по п. 1, отличающееся тем, что в качестве материала для подложки используют медь.

5. Устройство по п. 1, отличающееся тем, что прижимной ролик и движущие зубчатые колеса системы перемещения ленточной металлической подложки выполняют из термостойких материалов.



 

Похожие патенты:

Изобретение относится к модернизации установок для получения аммиака, в частности изобретение включает модернизацию паровой системы установки для получения аммиака, снабженной паровой системой.

Изобретение относится к области нанотехнологий. Изобретение относится к области получения новых углеродных материалов и раскрывает способ механического переноса графена, полученного методом химического осаждения из паровой фазы (CVD) на меди, на полимерные материалы.

Изобретение относится к области обработки воды. Способ обработки воды посредством фильтрации на слое гранулированного материала содержит этапы, на которых предназначенную для обработки воду перекачивают в реакторе восходящим потоком со скоростью, не допускающей псевдоожижения указанного слоя, но позволяющей указанному гранулированному материалу перемещаться по мере фильтрации в направлении нижней части указанного реактора; в основании реактора при помощи трубопровода, в который нагнетают газ, непрерывно отбирают загрязненный гранулированный материал, содержащий адсорбированные на нем загрязнители и задержанные частицы; отбираемый загрязненный гранулированный материал непрерывно или периодически подвергают физической очистке; очищенный гранулированный материал направляют обратно в указанный слой.

Предлагаемое изобретение относится к способам получения легированных углеродных нанотрубок, в частности легированных йодом нанотрубок, используемых в качестве наполнителей при получении полиимидов и композитов, применяемых в микроэлектронике.

Изобретение относится к способу обработки материала на основе лигнина. Способ включает обработку лигнина, извлеченного из лигноцеллюлозного сырья способом гидротермальной карбонизации при повышенной температуре, в результате чего получают карбонизированный лигнин с повышенным содержанием углерода, и стабилизацию полученного карбонизированного лигнина в инертной атмосфере при температуре проведения стабилизации, которая превышает температуру осуществления способа гидротермальной карбонизации.

Изобретение может быть использовано в неорганической химии. Способ получения порошка на основе карбида титана включает генерацию дугового разряда постоянного тока в газообразной среде между цилиндрическими графитовыми анодом и катодом.

Изобретение относится к области химии, а именно к плазмохимической конверсии газа или газовой смеси с применением импульсного электрического разряда и к устройству для его выполнения.

Предложен способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку.

Изобретение может быть использовано для прогнозирования качества изделий из терморасширенного графита. Измельчают натуральный чешуйчатый графит с получением пачек параллельно уложенных пластин графита.

Изобретение может быть использовано в водородной энергетике. Способ изготовления гидрида магния для химического генератора водорода включает механическую активацию металлического магния путем измельчения с поглощением механической энергии от 5 до 10 кДж/г.

Группа изобретений относится к электронике и предназначена для получения газочувствительного материала, используемого в устройствах, преобразующих концентрацию детектируемого примесного газа в воздухе в электрический сигнал.

Изобретение может быть использовано в химической промышленности. Натриевую форму монтмориллонита диспергируют в водной среде и осуществляют химическую обработку цвиттер-ионным ПАВ из класса бетаинов и имидазолинов из расчета количества ПАВ, эквивалентного не менее 0,2 ёмкости катионного обмена минерала.

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси, содержащей мономер цианат-эфира, углеродные нанотрубки и диспергант с последующим измельчением связующего криомельницей, гриндером или шаровой мельницей с получением порошка, на втором этапе производят термоотверждение порошка в пресс-форме при температуре 120-180°С в течение 3-8 часов.

Изобретение относится к сельскому хозяйству, медицине, ветеринарии и фармацевтической промышленности. Способ повышения антибактериальных свойств наночастиц серебра включает обработку УФ-излучением мощностью 40 Вт и длиной волны λ=254 нм препарата наночастиц серебра размером 70±0,5 нм в диапазоне концентраций 0,1-0,05М в течение 1-5 мин.

Предложен способ получения композиционного материала биотехнологического назначения, обладающего антимикробным действием, включающий синтез композиционного материала, состоящий из смешения наночастиц серебра с нулевой валентностью и стабилизатора наночастиц, поддержания температуры и воздействия ультразвуком, осаждение композиционного материала, фильтрование, промывку осадка и сушку.

Изобретение относится к области нанотехнологии, а именно к устройствам, обеспечивающим получение информации о топологии и других свойствах поверхности объекта. Нанозонд сканирующего микроскопа состоит из последовательно соединенных рабочего элемента нанозонда, консоли, держателя, датчика частоты собственных колебаний консоли и оптического датчика движения консоли, оптически связанного с консолью, а также привода рабочего элемента и блока формирования сигнала рассогласования положения рабочего элемента, входы которого подключены к выходам оптического датчика движения консоли и датчика частоты собственных колебаний консоли.

Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов.

Изобретение относится к способу получения сложных эфиров таллового масла, которые могут найти применение для получения жёстких пенополиуретанов. По первому варианту способ получения сложных эфиров таллового масла для получения жёстких пенополиуретанов, включает этерификацию таллового масла многоатомными спиртами путём нагревания при температуре 140–150°С в течение 3 часов в присутствии катализатора на основе сульфатированного оксида циркония на силикагеле, с размерами частиц 120-200 нм, в количестве 2,5-3,5% от количества таллового масла.

Изобретение может быть использовано в биомедицине для диагностики и терапии злокачественных новообразований. Способ получения стержневидных наночастиц магнетита включает подготовку водной суспензии прекурсора, представляющего собой стержневидные наночастицы акагенита, в который добавляют раствор восстановителя, представляющего собой соединение из группы гидразинов с двумя свободными электронами.

Группа изобретений относится к области газового анализа. Способ изготовления одноэлектродного газового сенсора на основе титановой проволоки, которую согласно изобретению окисляют методом анодирования в электрохимической ячейке, чтобы сформировать мезопористый оксидный слой, состоящий из радиально-ориентированных упорядоченных нанотрубок ТiO2 с толщиной стенок до 20 нм и внутренним диаметром до 150 нм.

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах.
Наверх