Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления п+ скрытых слоев. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентации (111) формировали п+ скрытый слой имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С, с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течение 20 мин в атмосфере водорода. В последующем формировали активные области транзистора и контакты по стандартной технологии. Техническим результатом изобретения является повышение значений коэффициента усиления, обеспечение технологичности, улучшение параметров, повышение качества и увеличения процента выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления п+ скрытых слоев.

Известен способ изготовления полупроводникового прибора [Заявка 2148847 Япония, МКИ H01L 21/331] путем формирования на подложке р-типа скрытого п+ слоя и эпитаксиального слоя п- типа. В последнем создают полевой оксид и маску, защищающую область формирования активной базы. Через нее эпитаксиальный слой травят, защищают стенки нитридом кремния и осаждают на пластину поликремний, легированный донорной примесью. Из последнего формируют коллекторный электрод с контактной площадкой расположенной на полевом оксиде. Поверхность поликремния окисляют и осаждают на структуру второй слой поликремния, легированный акцепторной примесью. Из него формируют базовый электрод. Затем формируют области активной базы и эмиттера.

Из-за не технологичности процессов осаждения поликремния при изготовлении приборов повышается дефектность структуры и ухудшаются электрические параметры изделий.

Известен способ изготовления полупроводникового прибора [Патент США5110749, МКИ H01L 21/265] путем формирования скрытых слоев для п-р-п и р-п-р биполярных транзисторов, входящих в состав биполярных ИС. В р-кремниевой подложке имплантацией ионов сурьмы формируют чередующиеся п+ карманы, покрытые термическим оксидом. Имплантацией ионов бора промежутки между п+ карманами заполняются р-областями. Затем проводится имплантация ионов фосфора с энергией 2 МэВ с образованием под р-областями скрытых п- слоев изолирующих р-области от подложки. Далее наращивается эпитаксиальный п- слой и формируется структура биполярного транзистора.

Недостатками этого способа являются: низкие значения коэффициента усиления; повышенные значения тока утечки; низкая технологичность.

Задача, решаемая изобретением: повышение значений коэффициента усиления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием скрытого п+ слоя имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С, с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течении 20 мин в атмосфере водорода.

Технология способа состоит в следующем: на пластинах кремния р-типа проводимости с удельным сопротивлением 10 Ом* см, ориентации (111) формировали п+ скрытый слой имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С, с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течении 20 мин в атмосфере водорода. В последующем формировали активные области транзистора и контакты по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 16,7%.

Предложенный способ изготовления полупроводникового прибора путем формирования скрытого п+ слоя имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течении 20 мин в атмосфере водорода, позволяет, повысит процент выхода годных приборов и улучшит их надежность.

Технический результат: повышение значений коэффициента усиления, обеспечение технологичности, улучшение параметров, повышение качества и увеличения процента выхода годных.

Способ изготовления полупроводникового прибора, включающий кремниевую подложку, процессы имплантации и отжига, наращивание эпитаксиального слоя, формирование активных областей, создание контактов и скрытых слоев, отличающийся тем, что скрытый п+ слой формируют имплантацией ионов мышьяка с энергией 150 кэВ, дозой (2-4) 1012 см-2 при температуре подложки 500-600°С с последующей разгонкой при температуре 1200°С в атмосфере смеси 50% кислорода О2/50% азота N2 и термическим отжигом при температуре 1000°С в течение 20 мин в атмосфере водорода.



 

Похожие патенты:

Изобретение относится к оптоэлектронике, а именно к способам изготовления периодических микроструктур на основе материалов с фазовой памятью - халькогенидных стеклообразных полупроводников, выполненных на поверхности оптически прозрачных материалов.

Использование: для изготовления светоизлучающих приборов на основе гексагональной фазы кремния, обеспечивающей эффективное возбуждение фотолюминесценции. Сущность изобретения заключается в том, что в способе формирования фазы гексагонального кремния путем имплантации в изготовленную из алмазоподобного монокристаллического кремния пластину ионов, имеющих атомный радиус, превышающий атомный радиус кремния, и образующих в результате указанной имплантации в алмазоподобном монокристаллическом кремнии пластины включения, инициирующие возникновение в нем повышенных механических напряжений, создающих энергетические условия преобразования алмазоподобной фазы монокристаллического кремния в его гексагональную фазу, для повышения стабильности возникновения в алмазоподобном монокристаллическом кремнии упомянутой пластины зоны повышенных механических напряжений производят имплантацию ионов азота и галлия через предварительно полученный на поверхности исходной пластины тонкий слой нитрида кремния толщиной, с одной стороны, не препятствующей прохождению сквозь слой имплантируемых ионов галлия и азота, с другой стороны, достаточной при подобранной энергии имплантации для запирания под ним в прилегающем к указанному слою нитрида кремния подповерхностном слое алмазоподобного монокристаллического кремния указанной пластины имплантированных ионов азота и галлия с образованием ими при последующем отжиге пластины в указанном подповерхностном слое включений нитрида галлия, приводящем к стабильному формированию в этом слое гексагональной фазы кремния с повышенным заполнением этого слоя указанной фазой.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной плотностью дефектов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженной плотностью дефектов.

Изобретение относится к микроэлектронике, в частности к технологии полупроводниковых приборов на эпитаксиальных структурах арсенида галлия. Техническим результатом предлагаемого способа изготовления интегральных элементов микросхемы на эпитаксиальных структурах арсенида галлия является обеспечение равенства слоевых сопротивлений для различных интегральных элементов, рабочая область которых формируется в эпитаксиальных структурах арсенида галлия при помощи жидкостного травления.

Изобретение относитья к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженными токами утечки.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления диэлектрической изоляции с низкими токами утечек.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярных транзисторов с высоким коэффициентом усиления.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления легированных областей с пониженной дефектностью.

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования силицидных слоев с низким сопротивлением. Изобретение обеспечивает снижение сопротивления, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. Способ изготовления полупроводникового прибора осуществляют путем формирования силицида ионной бомбардировкой ионов аргона с дозой 4*1015 см-2, энергией 300 кэВ в кремниевую подложку через пленку никеля толщиной 40-45 нм на ее поверхности, полученную в процессе напыления при давлении 9*10-5Па, со скоростью осаждения 1 нм/с, с последующим отжигом в течение 3 мин в потоке азота при температуре 350°С. 1 табл.
Наверх