Способ повышения энергоэффективности паросиловой установки и устройство для его осуществления

Способ может быть использован в области энергетики на тепловых электрических станциях (ТЭС) и атомных электрических станциях (АЭС) при утилизации низкопотенциальной теплоты циркуляционной воды тепловым насосом с целью повышения энергоэффективности. Утилизацию низкопотенциальной теплоты от охлаждающей воды конденсатора паровой турбины осуществляют путем отбора тепла при помощи испарителя теплового насоса, который подключен к подающему трубопроводу охлаждающей воды конденсатора паровой турбины, и используют отобранное тепло для подогрева конденсата, идущего с конденсатора паровой турбины, путем передачи тепла в конденсаторе теплового насоса. Для осуществления способа испаритель теплового насоса подключен к подводящему трубопроводу охлаждающей воды конденсатора паровой турбины, а конденсатор теплового насоса подключен к трубопроводу конденсата паровой турбины. Положительным эффектом предлагаемого способа является то, что отобранное тепло используется для подогрева конденсата, полностью исключив использование подогревателя низкого давления (ПНД), а так как при этом не будет осуществляться промежуточный отбор пара из турбины, то этот пар пройдет через остальные ступени турбины, совершая дополнительную работу и повышая выработку электрической энергии. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) и атомных электрических станциях (АЭС) при утилизации низкопотенциальной теплоты циркуляционной воды тепловым насосом с целью повышения энергоэффективности ТЭС, устройство и работа которых достаточно хорошо известны («Теплотехника» под общей редакцией И.Н. Сушкина, М, Металлургия, 1973 г (рис. 35, 2, стр. 449).

Для работы конденсатора паровой турбины создается система его охлаждения, в которой вода подается от насосной станции, отбирая тепло от рабочего тела, переводя пар в жидкость и возвращается в водоем - пруд-охладитель. Поскольку вода, является важным, с позиции стоимости и экологии веществом, поэтому организуется замкнутый цикл, в котором водоем является элементом системы охлаждения, где должно быть отведено тепло, получаемое охлаждающей водой от пара в конденсаторе. Следует отметить, что существующие оборотные циклы на ТЭС (ТЭЦ) в настоящее время не имеют эффективно действующих охладительных элементов, будь то пруд, фонтанирующий бассейн или градирня.

Охлаждение потока воды в этих устройствах происходит за счет частичного ее испарения как наиболее эффективного механизма отвода тепла, что приводит к соответствующим безвозвратным потерям воды и тепловой энергии. (Для охлаждения на 6°С необходимо испарить 1% охлаждаемой воды). Кроме того, такие устройства весьма громоздки, требуют значительных материальных затрат на сооружение и не всегда полностью устраняют отмеченный недостаток, т.к. эффективность их во многом зависит от сезона. Поэтому в некоторых случаях актуальным становится вопрос о принятии дополнительных мер по более эффективному использованию существующих устройств или применению иных способов охлаждения циркуляционной воды.

В настоящее время интенсивно развивается область энергосберегающей техники, к разряду которой относятся «Тепловые насосы» (ТН). Тепловой насос работает по обратному термодинамическому циклу, аналогичному обратному циклу Карно и по определению представляет собой машину, которая способна передавать тепло от окружающей среды с низким потенциалом к среде с более высоким потенциалом. Известно, что к.п.д. цикла теплового насоса достаточно высок вследствие того, что затраты энергии на его работу в несколько раз меньше той тепловой энергии, которую он «перекачивает».

Известен способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям (патент RU №2275512, МПК F01K 17/02, опубл. 11.10.2004).

Известно также устройство для утилизации энергии низкотемпературных теплоносителей (RU 32578, МПК F03G 7/00, опубл. 2003), принятое за прототип и содержащее турбину с электрогенератором и теплопотребитель. Устройство снабжено тепловым насосом, конденсатор приемного теплообменника которого включен в паросиловой контур на выходе отработанного пара из турбины, а нагреватель выходного теплообменника - на теплопотребитель.

Недостатком способа и устройства является то, что получаемое с их помощью низкопотенциальное тепло не может быть использовано непосредственно в основной технологической схеме АЭС или ТЭС.

Также наиболее близким техническим решением является способ для утилизации тепловой энергии воды, охлаждающей конденсатор паровой турбины, содержащее первый тепловой насос с приемным и выходным теплообменниками, компрессором и дросселем, образующими испарительно-конденсационный контур, второй тепловой насос со своим испарительно-конденсационным контуром заполненным теплоносителем с температурой кипения выше температуры кипения теплоносителя первого теплового насоса при рабочих условиях, при этом приемный теплообменник второго теплового насоса является одновременно выходным теплообменником первого теплового насоса, выходной теплообменник второго теплового насоса соединен с теплопотребителем - трубопроводом конденсата паровой турбины, а приемный теплообменник первого теплового насоса установлен на трубопроводе сбросной линии охлаждения конденсатора, или в паровом пространстве конденсатора турбины (патент RU 79431 МПК А62В 27/00, опубл. 04.09.2008).

Недостатком способа является невозможность управления работой конденсатора паровой турбины за счет температуры охлаждающей воды.

Технической проблемой, решаемой изобретением, является повышение энергоэффективности работы ТЭС выработкой электроэнергии на тепловом потреблении.

Данная техническая проблема решается тем, что в предлагаемом способе повышения энергоэффективности паросиловой установки, включающем преобразование тепловой энергии пара в электрическую на турбогенераторе, охлаждение отработанного пара в конденсаторе паровой турбины охлаждающей водой, стабилизацию работы конденсатора паровой турбины, за счет отбора тепла тепловым насосом и отдачи тепла потребителю, согласно изобретению, отбор тепла осуществляют на подводящем трубопроводе охлаждающей воды конденсатора паровой турбины при помощи испарителя теплового насоса и используют отобранное тепло для подогрева конденсата, идущего с конденсатора паровой турбины, путем передачи тепла в конденсаторе теплового насоса.

Данная техническая проблема решается также тем, что в предлагаемом устройстве для повышения энергоэффективности паросиловой установки, включающем испаритель теплового насоса, конденсатор теплового насоса, компрессор и дроссель, образующие испарительно-конденсационный контур, заполненный теплоносителм, согласно изобретению, испаритель теплового насоса подключен к подвоящему трубопроводу охлаждающей воды конденсатора паровой турбины, а конденсатор теплового насоса подключен к трубопроводу конденсата паровой турбины. Технический результат, получаемый при использовании предлагаемого изобретения заключается в том, что предлагаемый способ увеличения энергоэффективности работы паросиловой установки и устройство для его осуществления, предусматривает установку испарителя теплового насоса на подводящей линии охлаждающей воды для отбора тепла и стабилизации технических параметров работы конденсатора, а конденсатор теплового насоса устанавливается на трубопроводе конденсата паровой турбины, для передачи тепла. Таким образом, за счет теплового насоса понижение температуры охлаждающей воды до проектного уровня и постоянное удержание этого уровня повышает энергоэффективность и устойчивость работы паросиловой установки, а также снижает расход топлива на подогрев конденсата, подаваемого в котел.

В настоящее время мощные паросиловые установки запроектированы на давление в конденсаторе Р=0,004 МПа, чему соответствует температура насыщения tн=28,6°С. Это может быть обеспечено за счет температуры воды 20-22°С. Но летом это практически недостижимо, температура охлаждающей воды достигает 28-30°С, с соответствующим повышением температуры в конденсаторе до 45-49°С (по данным Западно-Сибирской ТЭЦ, филиал АО «ЕВРАЗ ЗСМК»). Давление возрастает до уровня Р=0,012 Мпа, что дает снижение к.п.д. паросиловой установки.

Предлагаемое изобретение проиллюстрировано схемой паросиловой установки.

Установка содержит турбоагрегат, состоящий из цилиндра высокого давления (ЦВД) 1, цилиндра среднего давления (ЦСД) 2, цилиндра низкого давления (ЦНД) 3, электрогенератора 4; конденсатор 5, конденсатный насос 6, паровые эжекторы 7, хозяйственный эжектор (ХЭ-40) 8, подогреватель сальниковый (ПС-125) 9; тепловой насос 10, который состоит из испарителя 11, циркуляционного насоса (компрессора) 12, конденсатора-теплообменника 13 и дроссельного клапана 14; деаэратор 15 (6 ата), питательный электронасос (ПЭН) 16, подогреватели высокого давления (ПВД) 17; паровой котел 18 с пароперегревателем 19; система охлаждения отработанного пара, которая включает в себя, береговую насосную станцию (БНС) 20, пруд-охладитель 21, холодный канал 22; насосную станцию 23; система химводоочистки, включающая насосную станцию подпитки теплосети (НПТС) 24 и химводоочистку 25.

Установка работает следующим образом.

В турбину паросиловой установки подается пар, который проходя последовательно через цилиндр высокого давления 1, среднего давления 2 и низкого давления 3 отдает свою энергию, которая используется для электрогенератора 4.

После этого пар проходит в конденсатор 5, где поддерживается пониженное давление (вакуум), что обеспечивает заданную температуру насыщения, необходимую для превращения пара в конденсат, имеющего жидкое состояние. Далее конденсат идет через систему устройств - конденсатный насос 6, паровые эжекторы 7, хозяйственный эжектор 8, подогреватель сальниковый 9, через конденсатор-теплообменник 13 теплового насоса 10. Затем конденсат поступает в деаэратор 15, для удаления растворенных газов, питательным электронасосом 16, перекачивается через элементы подогревателей высокого давления 17 и после подается в котел 18 с пароперегревателем 19.

Для создания системы охлаждения отработанного пара устанавливается береговая насосная станция 20, пруд-охладитель 21, холодный канал 22, насосная станция 23 и 24, и отдельная линия подпитки котла через установки химводоочистки 25.

На подводящей линии охлаждающей воды конденсатора 5 устанавливается испаритель 11 теплового насоса 10, доводящий температуру охлаждающей воды до уровня 20-22°С, позволяющей обеспечить проектную температуру в конденсаторе 5. После сжатия в компрессоре 12 теплового насоса 10 рабочий агент повышает свою температуру до 130-140°С и подается в конденсатор-теплообменник 13, где при конденсации отдает тепло основному конденсату паровой турбины, подогревая его до режимной температуры, которая ранее достигалась за счет использования подогревателя низкого давления. В тепловом насосе 10 рабочее тело (хладон) после конденсации в конденсаторе-теплообменнике 13 проходит через дроссельный клапан 14, затем в испаритель 11 и цикл теплового насоса 10 повторяется.

Положительным эффектом, при использовании предлагаемого изобретения, является то, что, полученное тепло можно использовать для подогрева конденсата, полностью исключив использование подогревателя низкого давления, а так как при этом не будет осуществляться промежуточный отбор пара из цилиндра среднего давления турбины, то этот пар пройдет через остальные ступени турбины, совершая дополнительную работу и повышая выработку электрической энергии при том же расходе пара на турбину.

1. Способ повышения энергоэффективности паросиловой установки, включающий преобразование тепловой энергии пара в электрическую на турбогенераторе, охлаждение отработанного пара в конденсаторе паровой турбины охлаждающей водой, стабилизацию работы конденсатора паровой турбины за счет отбора тепла тепловым насосом и отдачи тепла потребителю, отличающийся тем, что отбор тепла осуществляют на подводящем трубопроводе охлаждающей воды конденсатора паровой турбины при помощи испарителя теплового насоса и используют отобранное тепло для подогрева конденсата, идущего с конденсатора паровой турбины, путем передачи тепла в конденсаторе теплового насоса.

2. Устройство для повышения энергоэффективности паросиловой установки, включающее испаритель теплового насоса, конденсатор теплового насоса, компрессор и дроссель, образующие испарительно-конденсационный контур, заполненный теплоносителем, отличающееся тем, что испаритель теплового насоса подключен к подводящему трубопроводу охлаждающей воды конденсатора паровой турбины, а конденсатор теплового насоса подключен к трубопроводу конденсата паровой турбины.



 

Похожие патенты:

Изобретение относится к электроэнергетике и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина, например на конденсационных электростанциях - КЭС, на парогазовых электростанциях - ПГУ, использующих топливо - традиционный природный газ.

Изобретение относится к электроэнергетике и может быть использовано для разнесения топливных затрат между видами производимой энергии на теплоэлектроцентралях (ТЭЦ) и в энергообъединениях для оптимизации режимов их работы в целях экономии топлива и улучшения экологической обстановки в стране в целом.

Изобретение относится к энергетике. Способ работы теплоэлектрической станции с регенеративным циклом Ренкина может быть использован на атомных электрических станциях (АЭС) и тепловых электрических станциях (ТЭС).

Изобретение относится к области энергетики и может быть применено для обеспечения экономичности и автономности систем энергоснабжения. Комбинированная тепло- и электрогенерирующая установка состоит из водогрейного котла районной тепловой сети (РТС), подключенного к контуру сетевой воды, включающему тракт первичной горячей сетевой воды, связанный с тепловыми потребителями, и тракт обратной сетевой воды, связанный с насосом сетевой воды, и энергоустановки на низкокипящем рабочем теле (НКРТ).

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Система оборотного водоснабжения градирни, включающая градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит конденсатор паровой турбины, декарбонизатор с воздуховодом, систему оборотного водоснабжения.

Изобретение относится к теплоэнергетике, в частности к тепловым электростанциям промышленных предприятий, где применяются башенные или вентиляторные градирни. Конденсационная паротурбинная электростанция, содержащая котельную установку, паротурбинную установку и электрические устройства, обеспечивающие выработку электроэнергии потребителю.

Изобретение относится к области теплоэнергетики. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, охладитель пара уплотнений турбины, трубопровод основного конденсата турбины с включенными в него охладителем основных эжекторов и регенеративными подогревателями низкого давления, деаэратор добавочной питательной воды с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной добавочной питательной воды.

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Тепловая электрическая станция содержит парогазовую установку с газовой турбиной, компрессором газотурбинной установки, камерой сгорания, котлом-утилизатором, паровой турбиной с конденсатором, к которому подключены трубопроводы охлажденной и нагретой циркуляционной воды.

Изобретение относится к области теплоэнергетики. В теплофикационной турбоустановке, содержащей теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор с подключенным к нему основным эжектором, трубопровод основного конденсата турбины с включенными в него регенеративными подогревателями низкого давления, охладитель пара уплотнений турбины, деаэратор подпиточной воды тепловой сети с подключенными к нему трубопроводами исходной воды, греющего агента, деаэрированной подпиточной воды тепловой сети, трубопровод отработавшего пара основного эжектора подключен к патрубку греющего агента деаэратора подпиточной воды тепловой сети, а охладитель пара уплотнений турбины по охлаждающей среде включен в трубопровод исходной воды перед деаэратором подпиточной воды тепловой сети.

Способ может быть использован в области энергетики на тепловых электрических станциях и атомных электрических станциях при утилизации низкопотенциальной теплоты циркуляционной воды тепловым насосом с целью повышения энергоэффективности. Утилизацию низкопотенциальной теплоты от охлаждающей воды конденсатора паровой турбины осуществляют путем отбора тепла при помощи испарителя теплового насоса, который подключен к подающему трубопроводу охлаждающей воды конденсатора паровой турбины, и используют отобранное тепло для подогрева конденсата, идущего с конденсатора паровой турбины, путем передачи тепла в конденсаторе теплового насоса. Для осуществления способа испаритель теплового насоса подключен к подводящему трубопроводу охлаждающей воды конденсатора паровой турбины, а конденсатор теплового насоса подключен к трубопроводу конденсата паровой турбины. Положительным эффектом предлагаемого способа является то, что отобранное тепло используется для подогрева конденсата, полностью исключив использование подогревателя низкого давления, а так как при этом не будет осуществляться промежуточный отбор пара из турбины, то этот пар пройдет через остальные ступени турбины, совершая дополнительную работу и повышая выработку электрической энергии. 2 н.п. ф-лы, 1 ил.

Наверх