Способ получения металлического палладия

Способ получения металлического палладия относится к гидрометаллургии благородных металлов и может быть использован для получения палладия в виде металла. Палладий в виде соли растворяют, а затем восстанавливают до металла муравьиной кислотой. Техническим результатом является предотвращение самопроизвольного вспенивания пульпы в процессе восстановления и образования «зеркала» за счет восстановления палладия на стенках реакционного оборудования. Для этого растворение соли палладия проводят в растворе гидроксида натрия с концентрацией 80-150 г/л, полученный раствор прогревают в течение 0,5-1,5 часов. Металлический палладий отделяют фильтрацией, промывают и проводят термическую обработку. 1 табл., 2 пр.

 

Способ относится к гидрометаллургии благородных металлов и может быть использован для получения палладия в виде металла.

Известен способ восстановления палладия муравьиной кислотой, по которому к соли палладия прибавляют муравьиную кислоту, добавляют ацетат натрия до щелочной реакции по метилоранжу и прогревают раствор на водяной бане до полной коагуляции осадка (С.И. Гинзбург и др. изд-во. «Аналитическая химия платиновых металлов». "Наука", М., 1972, с. 203).

Недостатком способа является необходимость использования дополнительного дорогостоящего реагента - ацетата натрия, что увеличивает затраты на процесс.

Известен способ получения металлического палладия, включающий восстановление палладия из кислого или щелочного раствора, содержащего хлор-ионы и формиат-ионы стадийно, не менее чем в две стадии, причем каждую последующую стадию начинают после завершения восстановления на предыдущей стадии путем введения в пульпу соли палладия формиат-ионов (Ю.Н. Назаров, Н.В. Туляков, В.П. Горбатенко и др. Патент РФ №2154685 от 20.08.2000).

Недостатком способа является многостадийность процесса, которая приводит к задалживанию драгоценного металла в производственном цикле.

Известен способ осаждения палладия из растворов его хлоридов муравьиной кислотой при рН 4 в течение 2 часов. (М.А. Меретуков, A.M. Орлов. «Металлургия благородных металлов. Зарубежный опыт». М., Металлургия, 1991, с. 251).

Недостатком способа является неполнота осаждения палладия, а также самопроизвольное вспенивание пульпы в процессе восстановления и образование «зеркала» за счет восстановления палладия на стенках реакционного оборудования.

Известен способ получения металлического палладия, включающий растворение палладийсодержащего материала, осаждение палладия из раствора в виде соли, отделение осадка соли палладия фильтрацией и его отмывку, растворение соли в воде, восстановление палладия до металла муравьиной кислотой при рН не менее 6 ед., отделение металлического палладия фильтрацией, его промывку и сушку (Л.А. Поляков, А.Н. Татаринов, Ю.А. Монастырев и др. Патент РФ №2210609 от 20.08.2003).

Недостатком является самопроизвольное вспенивание пульпы в процессе восстановления и образование «зеркала» за счет восстановления палладия на стенках реакционного оборудования.

Данный способ является наиболее близким по технической сущности к заявляемому и принят в качестве прототипа.

Техническим результатом, на достижение которого направлено предполагаемое изобретение является устранение указанных недостатков.

Заданный технический результат достигается тем, что в известном способе получения металлического палладия, включающем осаждение палладия из раствора в виде соли, отделение осадка соли палладия фильтрацией и его отмывку, растворение соли, восстановление палладия до металла муравьиной кислотой при рН не менее 6 ед., отделение металлического палладия фильтрацией, его промывку и термическую обработку - растворение соли палладия проводят в растворе гидроксида натрия с концентрацией 80-150 г/л, а полученный раствор прогревают в течение 0.5-1.5 часов.

Сущность способа заключается в следующем.

Процесс восстановления палладия муравьиной кислотой при проведении в нейтральных и слабощелочных средах сопровождаются бурной реакцией с получением мелкодисперсных порошков, образующих тонкие пленки («зеркало») на стенках реакционных аппаратов.

По предлагаемому способу соль дихлордиаммин палладия растворяют в растворе гидроксида натрия:

Опытным путем установлено, что оптимальной концентрацией гидроксида натрия в растворе, обеспечивающей полноту растворения соли палладия и спокойное протекание реакции его последующего восстановления, является 80-150 г/л. При содержании в растворе NaOH менее 80 г/л не достигается полнота растворения соли дихлордиаммин палладия и при введении в пульпу муравьиной кислоты наблюдается резкое вспенивание. Подщелачивание до концентрации более 150 г/л не улучшает показатели перехода в раствор палладия, но ведет к не производительному расходу реагента.

При прогреве полученного раствора палладий частично выпадает в осадок его гидроксида по реакции (2), который при дальнейшей обработке муравьиной кислотой восстанавливается до металла по реакции (3) и образует центры кристаллизации для роста частиц порошка.

Экспериментально было определено, что оптимальной продолжительностью прогрева является интервал от 0.5 до 1.5 часов. Меньшее время прогрева не обеспечивает достаточного укрупнения осадков и не предотвращает восстановление палладия на стенках реакционного оборудования с образованием «зеркала». Более длительный прогрев способствует образованию крупных частиц гидроксидов, которые препятствуют полноте протекания реакции (3).

Ниже приведен пример осуществления способа.

Пример 1 (по прототипному способу). Соль дихлордиамминпалладия массой 100 г с содержанием палладия 35,4% поместили в стеклянный стакан, объемом 1 л, распульповали в воде и обработали раствором гидроксида натрия до значения рН=8.5. Пульпу отфильтровали. Раствор обработали восстановителем - муравьиной кислотой. После перемешивания пульпы осадок отделили фильтрацией и после промывки водой прокалили с получением металла, который проанализировали на наличие примесей по ГОСТ №31291-2005. Наличие «зеркала» на стенках стакана и увеличение объема пульпы при восстановлении определяли визуально. Результаты в таблице 1.

Пример 2. Соль дихлордиамминпалладия массой 100 г с содержанием палладия 35,4%, поместили в стеклянный стакан, объемом 1 л, распульповали в растворе гидроксида натрия заданной концентрации. Раствор прогрели в течение заданного времени, а затем обработали восстановителем - муравьиной кислотой. После перемешивания пульпы осадок отделили фильтрацией и после промывки водой прокалили с получением металла. Полученный палладий проанализировали на наличие примесей по ГОСТ №31291-2005. Наличие «зеркала» на стенках стакана и увеличение объема пульпы при восстановлении определяли визуально. Результаты представлены в таблице 1.

Как показано в приведенной таблице, использование заявляемого способа позволяет избежать самопроизвольного вспенивания пульпы в процессе восстановления и образования «зеркала» за счет восстановления палладия на стенках реакционного оборудования, при этом качество палладия соответствует ГОСТу №31291-2005.

Способ получения металлического палладия, включающий осаждение палладия из раствора в виде соли, отделение осадка соли палладия фильтрацией и его отмывку, растворение соли, восстановление палладия до металла муравьиной кислотой при рН не менее 6, отделение металлического палладия фильтрацией, его промывку и термическую обработку, отличающийся тем, что растворение соли палладия проводят в растворе гидроксида натрия с концентрацией 80-150 г/л и полученный раствор прогревают в течение 0,5-1,5 часов.



 

Похожие патенты:
Предложен способ экстракции и выделения, включающий стадию контактирования органической фазы, содержащей в качестве экстрагента диалкилдигликольамидокислоту с общей формулой R1R2NCOCH2OCH2COOH, с водной фазой, содержащей скандий и цирконий и/или гафний, с целью экстракции циркония и/или гафния в органическую фазу.

Изобретение относится к области цветной металлургии и может быть использовано для селективного извлечения никеля и кобальта из сульфатных растворов кучного выщелачивания окисленных никелевых руд.

Изобретение относится к способу селективного и экологически чистого совместного извлечения свинца и серебра в качестве концентрата из отходов гидрометаллургического производства.

Изобретение относится к способу удаления натрия из технологического потока гидрометаллургического процесса, содержащего хлорид аммония, хлорид никеля, хлорид меди, хлорид кобальта и/или хлорид магния.

Изобретение относится к гидрометаллургии редких металлов, а конкретно к способам переработки висмутсодержащих материалов с получением висмута нитрата основного. Получение висмута нитрата основного проводят путем обработки висмутсодержащего материала азотной кислотой.

Изобретение относится к способам регенерации свободного цианида из вод, содержащих тиоцианаты, цианиды и тяжелые металлы. Способ регенерации свободного цианида из вод, содержащих тиоцианаты и тяжелые металлы, включает селективное окисление в кислых средах, улавливание синильной кислоты из отходящих газов в щелочной поглотитель, подщелачивание вод после их окислительной обработки.

Способ получения низкокремнистого высокочистого пентоксида ванадия (V2O5) из смешанного раствора, содержащего ванадий, хром и кремний. Способ включает следующие стадии: во-первых, из раствора, содержащего ванадий, хром и кремний, с помощью соли амфотерного металла и/или соли щелочного металла удаляют кремний, затем удаляют другие примеси посредством регулирования величины pH и осуществляют разделение твердого вещества и жидкости.

Изобретение относится к области гидрометаллургии и может быть использовано для получения уранового концентрата в технологии природного урана. Способ получения уранового концентрата из нитратно-сульфатного десорбата, образующегося в результате десорбции урана из насыщенного анионита подкисленными растворами аммиачной селитры, заключается в осаждении концентрата путем нейтрализации одностадийной обработкой десорбата аммиаком при постоянном значении рН 6,7-7,5.

Изобретение относится к способам обработки материалов промышленных отходов, а именно к способам обработки летучей золы. Способ включает выщелачивание летучей золы с использованием HCl с получением продукта выщелачивания, содержащего ионы алюминия, ионы железа и твердое вещество, и отделение указанного твердого вещества от продукта выщелачивания.
Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства.

Способ переработки золотосеребряных сплавов с получением золота относится к гидрометаллургии благородных металлов и может быть использован при переработке золотосеребряных сплавов.

Изобретение относится к способу переработки шлама доменной печи, содержащего железо и 4,5 – 12 мас.% цинка. Этот способ включает стадию выщелачивания, на которой выщелачивающие агенты включают хлористоводородную кислоту и хлорат, и значение рН фильтрата, непосредственно полученного в результате этой стадии выщелачивания, устанавливается строго ниже 1,5.

Изобретение относится к гидрометаллургической переработке рудных концентратов, преимущественно колумбитового или колумбито-танталитового концентрата. Способ разделения соединений ниобия и тантала включает коллективную экстракцию октанолом-1 ниобия и тантала из кислых сульфатно-фторидных растворов и добавку в полученный после экстракции раствор серной и плавиковой кислот.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ.

Изобретение относится к технологии получения оксида магния из магнийсодержащего минерального сырья. Способ получения оксида магния из отходов серпентинитовой руды включает подготовку отходов серпентинитовой руды, мокрую магнитную сепарацию для отделения магнийсодержащей суспензии от магнетита, выщелачивание с помощью минеральной кислоты, карбонизацию и отжиг.

Изобретение относится к гидрометаллургической переработке золотосодержащих упорных материалов. Способ основан на использовании слабокислых растворов азотной кислоты и заключается в интенсификации процесса гидрометаллургического извлечения золота путем совокупного использования озона на операции окисления и бинарной комплексообразующей системы, состоящей из аминокислоты и тиокарбамида, на операции выщелачивания.

Изобретение относится к металлургии благородных металлов, в частности к переработке сульфидных концентратов, содержащих благородные металлы. Проводят гидрохимическую доводку сульфидного концентрата в растворе азотной кислоты с отделением раствора-маточника.

Изобретение относится к металлургии благородных металлов, в частности к переработке сульфидных концентратов, содержащих благородные металлы. Проводят гидрохимическую доводку сульфидного концентрата в растворе азотной кислоты с отделением раствора-маточника.

Изобретение относится к извлечению редкоземельных металлов из сырьевых материалов, содержащих эти элементы. Селективное извлечение осуществляют из насыщенных маточных растворов в виде оксалатов РЗЭ.

Изобретение относится к металлургии и может быть применено для комплексной переработки пиритсодержащего сырья. Осуществляют безокислительный обжиг, обработку огарка с растворением железа, цветных металлов, серебра и золота и получение их концентратов.

Изобретение относится к процессам разделения металлов, в частности разделения драгоценных металлов, таких как платина и палладий, жидкостной экстракцией. В изобретении также предлагаются новые смеси для жидкостной экстракции.
Наверх