Способ производства горячекатаного проката повышенной прочности

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления насосно-компрессорных труб. Для повышения прочностных свойств и коррозионной стойкости проката осуществляют выплавку стали, содержащей, мас. %: углерод 0,21-0,29, кремний 0,30-0,80, марганец 1,0-1,60, сера не более 0,005, фосфор не более 0,015, хром 0,10-0,40, никель 0,10-0,40, медь 0,10-0,40, алюминий 0,02-0,07, азот не более 0,01, ниобий не более 0,01, титан не более 0,03, ванадий не более 0,01, молибден не более 0,01, кальций не более 0,02, железо и неизбежные примеси - остальное, непрерывную разливку в слябы, нагрев слябов, горячую прокатку при температуре конца чистовой прокатки в диапазоне Tnr+20°С÷Ar3+50°С, где Tnr - температура остановки рекристаллизации, °С, охлаждение проката после чистовой прокатки в течение первых 10-15 с на воздухе, а затем водой со скоростью охлаждения не более 9°С/с на первом участке и не более 5°С/с на втором, смотку полос в рулоны в диапазоне 580÷640°С с обеспечением в прокате феррито-перлитной структуры с содержанием феррита 40-70%, в которой отсутствуют элементы структуры закалочного типа. 3 табл.

 

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления насосно-компрессорных труб группы прочности Кс по ГОСТ 52203-04.

Определяющими качествами проката, предназначенного для нефтепроводных труб группы Кс являются высокий предел прочности исходного проката и готовой трубы, обеспечивающий требуемую прочность трубы, достаточно низкий предел текучести и отсутствие структур закалочного типа (бейнит, мартенсит и т.п.), обеспечивающих хорошую формуемость проката в готовую трубу, обеспечение хорошей свариваемости и отсутствия дефектов УЗК в сварном шве и околошовной зоне.

В таблице 1 приведены требования к механическим свойствам проката для изготовления насосно-компрессорных труб группы Кс.

Известен способ производства штрипсов из низколегированной стали, включающий получение сляба, нагрев сляба, черновую и многопроходную чистовую прокатку до заданной толщины в регламентированном температурном диапазоне, охлаждение водой до температуры смотки согласно которому сляб получают из стали, содержащей, мас. %:

Углерод 0,22-0,28
Марганец 1,0-1,4
Кремний 0,15-0,35
Алюминий 0,02-0,05
Кальций не более 0,02
Титан не более 0,03
Хром не более 0,40
Медь не более 0,40
Сера не более 0,010
Фосфор не более 0,015
Азот не более 0,012
Железо остальное

при этом многопроходную чистовую прокатку ведут в диапазоне температур от 960-1050 до 820-890°С, температуру смотки устанавливают в зависимости от толщины проката в диапазоне 580-660°С (Патент РФ №2341565, опубл.20.12.2008, МПК C21D 8/02, С22С 38/20).

Недостаток известного способа состоит в том, что он не позволяет обеспечить прочностные характеристики, требуемые для группы Кс.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства штрипсов из низколегированной стали, включающий нагрев слябов, прокатку в штрипсы с регламентированной температурой конца прокатки и охлаждение водой до температуры смотки согласно которому нагрев слябов производят до температуры 1220-1280°С, температуру конца прокатки поддерживают в диапазоне 820-880°С, а температуру смотки устанавливают в зависимости от содержания углерода в стали по соотношению:

Тсм=[С]⋅103+(390±30),

где Тсм - температура смотки,°С;

[С] - содержание углерода в стали, мас. %.

Кроме того, штрипсы прокатывают из низколегированной стали следующего химического состава, мас. %:

Углерод 0,15-0,24
Марганец 0,20-0,70
Кремний 0,10-0,40
Алюминий 0,01-0,07
Ниобий 0,01-0,08
Хром не более 0,4
Никель не более 0,4
Медь не более 0,4
Фосфор не более 0,020
Сера не более 0,010
Азот не более 0,012
Железо остальное.

(Патент РФ №2264475, опубл. 20.11.2005 г., МПК С21D 8/02, С22С 38/46).

Недостаток известного способа состоит в том, что он не позволяет обеспечить прочностные характеристики, требуемые для группы Кс.

Техническим результатом предлагаемого изобретения является повышение прочностных свойств и коррозионной стойкости горячекатаного проката.

Технический результат достигается тем, что в способе производства горячекатаного проката повышенной прочности, включающем выплавку стали, непрерывную разливку в слябы, нагрев слябов, горячую прокатку, охлаждение водой, смотку полос в рулоны, согласно изобретению выплавляют сталь, содержащую, мас. %:

Углерод 0,21-0,29
Кремний 0,30-0,80
Марганец 1,0-1,60
Сера не более 0,005
Фосфор не более 0,015
Хром 0,10-0,40
Никель 0,10-0,40
Медь 0,10-0,40
Алюминий 0,02-0,07
Азот не более 0,01
Ниобий не более 0,01
Титан не более 0,03
Ванадий не более 0,01
Молибден не более 0,01
Кальций не более 0,02
Железо и неизбежные примеси остальное,

при этом температуру конца чистовой прокатки поддерживают в диапазоне Tnr+20°С÷Ar3+50°С, где Tnr - температура остановки рекристаллизации, °С, а температуру смотки поддерживают в диапазоне 580÷640°С, охлаждение проката после окончания чистовой прокатки в течение первых 10-15 секунд осуществляют на воздухе, а потом водой со скоростью охлаждения не более 9°С/с на первом участке и не более 5°С/с на втором, при этом в прокате формируется феррито-перлитная структура с содержанием феррита 40-70%, в которой отсутствуют элементы структуры закалочного типа.

Сущность предлагаемого технического решения заключается в следующем.

Углерод в конструкционной стали предложенного состава определяет как непосредственно прочность готового проката, так и возможность получения достаточно низких значений предела текучести. Снижение содержания углерода менее 0,21% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода более 0,29% негативно влияет с точки зрения роста ликвации и как следствия увеличения полосчатости структуры.

Кремний ускоряет γ→α превращение, повышая точку начала выделения феррита. При высоком содержании Si повышается объемная доля феррита в структуре. Кремний в Si-Mn-Cr стали сильно повышает предел прочности за счет твердорастворного упрочнения феррита, одновременно понижая отношение предела текучести к пределу прочности и практически не влияя на пластические свойства. Известно, что твердорастворное упрочнение феррита кремнием затрудняет скольжение, вызывая рост деформационного упрочнения ферритной матрицы. Кремний увеличивает термодинамическую активность углерода в аустените. В результате повышается пластичность феррита за счет очистки от атомов углерода, которые при γ→α превращении переходят в непревращенный аустенит и повышают его устойчивость. При содержании кремния менее 0,30% не достигается уровень прочностных свойств проката. Увеличение содержания кремния более 0,80% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность.

Снижение содержания марганца менее 1,00% увеличивает окисленность стали, снижает прочность стали ниже допустимой. Повышение содержания марганца более 1,6% повышает предел текучести выше требуемых величин и снижает значение относительного удлинения.

Хром, никель, медь в диапазоне 0,10-0,40% каждого введены в сталь для увеличения прочностных свойств, а так же для стабилизации структуры при нагреве металла под прокатку и уменьшении размера зерна при черновой прокатке. Кроме того, при указанных предельных концентрациях эти элементы в стали предложенного состава положительно влияют на стойкость труб к коррозии.

Алюминий 0,02-0,07% введен в сталь для раскисления. При значениях менее 0,02% сталь будет недораскислена, при значениях более 0,07% - сталь будет иметь повышенный уровень неметаллических включений.

Все остальные элементы, содержание которых ограничено по верхнему пределу, являются примесными.

Заданное сочетание температуры окончания чистовой прокатки Tnr+20°С÷Ar3+50°С, где Tnr - температура остановки рекристаллизации, °С охлаждения проката после окончания чистовой прокатки в течение первых 10-15 секунд на воздухе, а потом водой со скоростью охлаждения не более 9°С/с на первом участке и не более 5°С/с на втором, и температуры смотки 580÷640°С обеспечивает получение равномерной феррито-перлитной структуры с содержанием феррита 40-70%, в которой отсутствуют элементы структуры закалочного типа. Снижение температуры конца прокатки, повышение температуры смотки приведет к снижению скорости охлаждения, увеличению размера зерна феррита и снижению прочностных характеристик ниже требуемых. Повышение температуры конца прокатки, снижение температуры смотки приводит к увеличению скорости охлаждения, что увеличивает риск получения структур закалочного типа, а также приводит к избыточному измельчению зерна и увеличению прочностных характеристик проката, что в свою очередь увеличивает трудоемкость формовки готовой трубы. Форсированное двухступенчатое охлаждение позволяет сформировать равномерную по толщине структуру проката, необходимую для качественной формовки труб из данного металлопроката.

Для получения более достоверных результатов расчет температуры остановки рекристаллизации Tnr производят по формуле:

где Tnr - температура остановки рекристаллизации, °С,

174 - эмпирический коэффициент, полученный опытным путем,

Nb, С, N - содержание ниобия, углерода и азота в стали, %,

1444 - эмпирический коэффициент, полученный опытным путем.

Пример реализации способа.

В кислородном конвертере выплавляли низколегированные стали, химический состав которых приведен в таблице 2.

Непрерывнолитые слябы из стали с химическим составом таблицы 2 загружают в методическую печь с и нагревают до температуры аустенитизации 1260°С, после чего прокатывают на непрерывном стане. После выравнивания температуры слябов по сечению, очередной сляб подают к непрерывному широкополосному стану 2000 и подвергают черновой прокатке за 5 проходов в раскат с промежуточной толщиной Нр=35-38 мм. Далее металл прокатывают за 7 проходов в непрерывной чистовой группе клетей (чистовая прокатка).

Температуру конца прокатки и смотки выбирают в диапазонах Tnr+20°С÷Ar3+50°С и 580-640°С соответственно, при этом:

Ar3=910-273×С-74×Mn-5×Cu-16×Cr-56×Ni-9×Мо=910-273×0,27-74×1,35-5×0,17-16×0,12-56×0,13-9×0,002=726°С

После окончания чистовой прокатки в течение первых 10-15 секунд прокат охлаждают на воздухе, а потом водой со скоростью не более 9°С/с на первом участке ламинарного охлаждения и со скоростью не более 5°С/с на втором участке ламинарного охлаждения.

В таблице 3 представлены показатели механических и эксплуатационных свойств металла, произведенного по приведенной выше технологии.

Из данных, приведенных в таблице 3, следует, что при реализации предложенного способа достигается требуемое сочетание высокого предела прочности и требуемого предела текучести.

В результате полученный металл полностью соответствует требованиям, предъявляемым к сталям для производства насосно-компрессорных труб. Представленная технология позволяет сформировать феррито-перлитную структуру с содержанием феррита 40-70%, в которой отсутствуют элементы структуры закалочного типа, что гарантирует равномерное распределение свойств как по площади проката, так и по его толщине.

Способ производства горячекатаного проката повышенной прочности, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов, горячую прокатку, охлаждение водой, смотку полос в рулоны, отличающийся тем, что выплавляют сталь, содержащую, мас. %:

Углерод 0,21-0,29
Кремний 0,30-0,80
Марганец 1,0-1,60
Сера не более 0,005
Фосфор не более 0,015
Хром 0,10-0,40
Никель 0,10-0,40
Медь 0,10-0,40
Алюминий 0,02-0,07
Азот не более 0,01
Ниобий не более 0,01
Титан не более 0,03
Ванадий не более 0,01
Молибден не более 0,01
Кальций не более 0,02
Железо и неизбежные примеси остальное,

при этом температуру конца чистовой прокатки поддерживают в диапазоне Tnr+20°С÷Ar3+50°С, где Tnr - температура остановки рекристаллизации, °С, а температуру смотки поддерживают в диапазоне 580÷640°С, охлаждение проката после окончания чистовой прокатки в течение первых 10-15 с осуществляют на воздухе, а потом водой со скоростью охлаждения не более 9°С/с на первом участке и не более 5°С/с на втором, при этом обеспечивают в прокате формирование феррито-перлитной структуры с содержанием феррита 40-70%, в которой отсутствуют элементы структуры закалочного типа.



 

Похожие патенты:

Изобретение относится к микромеханическому компоненту часового механизма (1), включающего в себя металлическое изделие, сформированное из однокомпонентного материала.

Изобретение относится к области металлургии, а именно к перлитным дисперсионно-твердеющим сталям, используемым для изготовления железнодорожных колес. Сталь содержит, мас.%: углерод 0,55-0,75, кремний 0,25-0,65, марганец 0,30-0,82, медь 0,36-1,40, хром - не более 0,1, фосфор - не более 0,030, серу - не более 0,020, железо и неизбежные примеси - остальное.

Изобретение относится к области металлургии, в частности к твердому припою для высокотемпературной пайки нержавеющей стали. Порошок твердого припоя на железохромовой основе для высокотемпературной пайки основного материала из нержавеющей стали содержит, мас.

Изобретение относится к области металлургии, в частности к твердому припою на железохромовой основе с превосходной характеристикой смачивания на материале на основе нержавеющей стали, причем твердый припой образует паяное соединение с высокой прочностью и хорошей коррозионной стойкостью.

Изобретение относится к области металлургии, конкретно к производству горячекатаной полосы толщиной 4-9 мм повышенной прочности, предназначенной для изготовления деталей автомобиля методом штамповки и профилирования.

Изобретение относится к области машиностроения, в частности к термической обработке колец подшипников качения, которые эксплуатируются на железнодорожном транспорте, и может быть использовано в подшипниковой промышленности при производстве деталей подшипников, в частности внешних колец.

Изобретение относится к области металлургии. .
Изобретение относится к области металлургии, в частности к производству сортового проката в прутках, круглого, диаметром 100 мм, из рессорно-пружинной стали. .

Изобретение относится к области металлургии, конкретнее к прокатному производству низколегированных сталей различных классов прочности, и может быть использовано для производства готовых листов, используемых в качестве исходной заготовки для прямошовных электросварных труб большого диаметра.
Изобретение относится к области металлургии. .

Изобретение относится к области металлургии. Для повышения механических характеристик стального изделия способ включает стадии: получения нагретого стального исходного изделия при температуре от 380 до 700°С, обладающего метастабильной аустенитной структурой и содержащего, в мас.%: 0,15 ≤ С ≤ 0,40, 1,5 ≤ Mn ≤ 4,0, 0,5 ≤ Si ≤ 2,5, 0,005 ≤ Al ≤ 1,5, при этом 0,8 ≤ Si + Al ≤ 2,5, S ≤ 0,05, P ≤ 0,1 по меньшей мере один элемент из: Cr и Мо: 0 ≤ Cr ≤ 4,0, 0 ≤ Mo ≤ 0,5 и 2,7 ≤ Mn + Cr + 3 Mo ≤ 5,7, и необязательно один или несколько элементов из: Nb ≤ 0,1, Ti ≤ 0,1, Ni ≤ 3,0, 0,0005 ≤ B ≤ 0,005, 0,0005 ≤ Ca ≤ 0,005, остальное- железо и неизбежные примеси, проведения стадии горячего формования при температуре от 700 до 380°С, с суммарной деформацией εb от 0,1 до 0,7 по меньшей мере в одном местоположении нагретого стального исходного изделия для получения полностью аустенитной структуры горячеформованного стального изделия, после этого закаливания горячеформованного стального изделия путем охлаждения при скорости охлаждения VR2, превосходящей критическую мартенситную скорость охлаждения, до температуры QT, меньшей Ms, для получения структуры, содержащей от 40 до 90% мартенсита, остальное аустенит, после этого сохранения продукции при температуре выдерживания РТ в диапазоне от QT до 470°С или повторного нагрева изделия до упомянутой температуры и выдерживания при температуре РТ в течение периода времени Pt от 5 сек до 600 сек.

Изобретение относится к области металлургии, в частности к производству листового проката для применения в ответственных деталях автомобилей, сельскохозяйственного оборудования, краностроении и др., сталь может использоваться в строительных конструкциях в условиях Сибири и Крайнего Севера.

Изобретение относится к области металлургии. Для обеспечения электрической изоляции основного металлического материала и придания ему химической и термической стойкости листовое изделие из электротехнической стали с ориентированной структурой содержит слой изолирующего покрытия, наносимый на по меньшей мере одну поверхность данного листового изделия, при этом данное изолирующее покрытие включает матрицу, содержащую фосфат и диоксид кремния.

Изобретение относится к обработке и отделке полосового проката, в частности ленты, предназначенной для упаковки рулонного металла и листов в пачках. Для обеспечения в упаковочной ленте требуемого уровня физико-механических свойств в широком диапазоне толщин от 0,45 до 1,30 мм в условиях высокопроизводительного агрегата обработке подвергают холоднокатаную ленту с содержанием 0,28-0,50 мас.% углерода, при этом ленту нагревают со скоростью 4,5-8,0°С/с до температуры 930-950°С, выдерживают в расплаве свинца в течение 20-50 с при температуре 460-500°С, окрашивают поверхность и сушат, а затем осуществляют покрытие ленты воском в водно-восковой эмульсии, содержащей 20% парафина, с последующим охлаждением воздухом, имеющим температуру 60-70°С.

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец 0,15-0,40, сера не более 0,015, фосфор не более 0,020, хром 0,15-0,30, никель не более 0,1, медь не более 0,1, алюминий 0,01-0,05, азот не более 0,006, молибден не более 0,015, ниобий не более 0,01, титан не более 0,01, ванадий не более 0,01, мышьяк не более 0,08, железо и неизбежные примеси - остальное.

Настоящее изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности TS по меньшей мере 1180 МПа, полное удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, а также к высокопрочному стальном листу с покрытием, полученному предлагаемым способом.

Изобретение относится к области металлургии, а именно к закаленной в штампе стальной детали, используемой для изготовления конструкционных деталей или элементов безопасности транспортных средств.

Изобретение относится к способу изготовления высокопрочного стального листа с покрытием, имеющего улучшенную пластичность и формуемость, при этом стальной лист с покрытием имеет предел текучести YS по меньшей мере 800 МПа, предел прочности при растяжении TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, посредством термической обработки и нанесения покрытия на лист, выполненный из стали, имеющей следующий химический состав, мас.

Изобретение относится к стальному листу с покрытием, изготовленным из стали, имеющей химический состав, включающий в себя, мас. %: 0,34% ≤ C ≤ 0,40%, 1,50% ≤ Mn ≤ 2,30%, 1,50 ≤ Si ≤ 2,40%, 0,35% ≤ Cr ≤ 0,45%, 0,07% ≤ Мо ≤ 0,20%, 0,01% ≤ Al ≤ 0,08% и 0% ≤ Nb ≤ 0,05%, остальное Fe и неизбежные примеси, при этом стальной лист с покрытием имеет структуру, включающую в себя по меньшей мере 60% мартенсита и 12-15% остаточного аустенита, причем стальной лист с покрытием является оцинкованным, а также стальной лист с покрытием имеет предел прочности по меньшей мере 1470 МПа и общее удлинение по меньшей мере 16%.

Изобретение относится к области металлургии, в частности к многофазной стали, используемой для транспортных средств облегченной конструкции. Для обеспечения однородных механических свойств и минимальной прочности на растяжение 980 МПа получают многофазную сталь содержащую, мас.%: C от 0,075 до 0,115, Si от 0,400 до 0,500, Mn от 1,900 до 2,350, Cr от 0,250 до 0,400, Al от 0,005 до 0,060 , N от 0,0020 до 0,0120, S менее или равно 0,0020, Nb от 0,005 до 0,060, Ti от 0,005 до 0,060, B от 0,0005 до 0,0010, Mo от 0,200 до 0,300, Ca от 0,0010 до 0,0060, Cu менее или равно 0,050, Ni менее или равно 0,050, остальное – железо и неизбежные примеси, при этом общее содержание Mn+Si+Cr составляет от 2,500 до 3,250 мас.%.
Наверх