Способ обработки лопаток блиска газотурбинного двигателя

Изобретение относится к обработке металлов резанием и может быть использовано при фрезеровании криволинейных поверхностей лопаток блиска на станках с числовым программным управлением с целью повышения точности их изготовления. Способ обработки лопаток блиска газотурбинного двигателя, при котором осуществляют фрезерование профиля пера лопатки блиска по базовой управляющей программе. Затем производят промежуточный контроль полученной геометрии пера, на основании которого осуществляют коррекцию управляющей программы по следующему принципу. Центр инструмента в каждой опорной точке смещают вдоль вектора нормали к обрабатываемой поверхности на расстояние, равное величине измеренного отклонения. В случае обнаружения положительного отклонения в опорной точке центр инструмента смещают в сторону обрабатываемой поверхности, в случае обнаружения отрицательного отклонения - в обратном направлении. Затем осуществляют обработку лопатки по скорректированной управляющей программе с последующим повторным контролем. Коррекция управляющей программы и последующая обработка повторяются несколько раз до достижения необходимой точности. Далее указанные действия осуществляют для остальных лопаток блиска. Повышается точность обработки лопаток блиска газотурбинного двигателя. 2 ил.

 

Изобретение относится к обработке металлов резанием и может быть использовано при фрезеровании криволинейных поверхностей лопаток блиска на станках с числовым программным управлением с целью повышения точности их изготовления.

Известен способ изготовления моноколес и крыльчаток газотурбинных двигателей (Патент РФ №2451265, МПК G01B 5/012, опубл. 20.05.2012), включающий в себя фрезерование межлопаточных каналов через один с последующей временной заливкой обработанных каналов сплавом Вуда для фрезерования соседних межлопаточных каналов без существенной потери жесткости заготовки.

Недостатками данного способа являются большая трудоемкость, связанная с заливкой межлопаточных каналов сплавом Вуда и последующим его выплавлением, а также недостаточно высокая точность изготовления пера из-за отсутствия учета погрешности обработки, обусловленной рядом многих случайных факторов (внутренними напряжениями в заготовке, колебанием припуска, размерным износом инструмента, и т.д.).

Известен способ обработки моноколес (Патент РФ №2429949, МПК В23С 3/18, опубл. 27.09.2011), основанный на назначении режимов обработки пера лопатки исходя из величины допустимой деформации обрабатываемой поверхности.

Недостатком данного способа также является недостаточно высокая точность изготовления пера из-за отсутствия учета погрешности обработки, обусловленной рядом многих случайных факторов (внутренними напряжениями в заготовке, колебанием припуска, размерным износом инструмента и т.д.).

Наиболее близким к заявляемому изобретению и выбранным в качестве прототипа является способ изготовления цельнофрезерованного рабочего колеса газотурбинного двигателя концевыми фрезами на станках с числовым программным управлением (Патент РФ №2625860, МПК В23С 3/18, опубл. 19.07.2017), заключающийся в том, что осуществляют черновую обработку, при которой прорезают межлопаточные пазы, и последующую чистовую обработку, при которой фрезеруют профиль пера лопатки от вершины к радиусу перехода в ступицу, причем съем металла ведут поочередно чередующимися со сторон корыта и спинки строками, измеренными по высоте пера лопатки. Ширину первой строки выбирают меньшей или равной половине ширины последующей строки, а ширину последующих строк - равной или меньшей предыдущей строки при условии, что чередование строк не приводит к симметричному снятию металла со стороны корыта и спинки и обеспечивает максимальную жесткость обрабатываемого пера лопатки.

Недостатком прототипа является недостаточно высокая точность изготовления пера из-за отсутствия в процессе обработки промежуточного контроля погрешности обработки, обусловленной рядом многих случайных факторов (вибрациями лопатки из-за малой жесткости, колебаниями припуска, внутренними напряжениями, размерным износом инструмента и т.д.).

Задачей изобретения является повышение точности изготовления лопаток блиска.

Техническим результатом изобретения является учет погрешностей обработки за счет введения промежуточного контроля.

Технический результат достигается способом обработки лопаток блиска газотурбинного двигателя концевыми фрезами на станках с числовым программным управлением, включающим фрезерование профиля пера лопатки от вершины лопатки к радиусу перехода в ступицу, при этом съем металла ведут поочередно чередующимися со стороны корыта и спинки строками, измеренными по высоте пера лопатки, причем ширину первой строки выбирают меньшей или равной половине ширины последующей строки, а ширину последующих строк выбирают равной или меньшей ширины предыдущей строки из условия, что чередование строк не приводит к симметричному снятию металла со стороны корыта и спинки, за исключением обработки прикомлевого участка пера, и обеспечивает максимальную жесткость обрабатываемого пера лопатки, в котором в отличие от прототипа в процессе обработки проводят промежуточный контроль обработанной поверхности по совокупности опорных точек, полученных в результате определения контактным путем их фактических координат, по результатам которого осуществляют изменение базовой управляющей программы с учетом погрешностей случайного характера для обработки по скорректированной программе, притом коррекцию управляющей программы и последующую обработку повторяют несколько раз до достижения необходимой точности, а указанную процедуру обработки осуществляют для всех остальных лопаток блиска.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена схема обработки с учетом коррекции управляющей программы, на фиг. 2 представлена совокупность опорных точек для коррекции управляющей программы.

Способ осуществляют следующим образом.

Осуществляют предварительную обработку лопатки блиска по методике прототипа (Патент РФ №2625860, МПК В23С 3/18, опубл. 19.07.2017) по базовой управляющей программе, содержащей пространственные координаты центра инструмента X, Y, Z (фиг. 1). Базовая управляющая программа создается на основе опорных точек номинальной объемной математической модели (ОММ) обрабатываемой лопатки, имеющих пространственные координаты Х0, Y0, Z0 (фиг. 2). Затем производят промежуточный контроль обработанной поверхности пера, используя известные контактно-измерительные средства (http://www.renishaw.ru/ra/sprint-on-machine-contact-scanning-system--20908). Результатом измерения является облако точек. Данное облако точек, описывающее поверхность обработанной лопатки, преобразуется в ОММ обработанной поверхности по известным методикам с помощью CAD-системы (например, Autodesk PowerShape). Затем опорные точки вдоль вектора нормали к поверхности номинальной ОММ проецируются на ОММ обработанной поверхности лопатки с получением массива новых опорных точек, имеющих пространственные координаты X1, Y1, Z1 (фиг. 2).

Корректировка управляющей программы осуществляется следующим образом. Центр инструмента в каждой опорной точке смещается вдоль вектора нормали к поверхности номинальной ОММ на расстояние, равное величине отклонения, рассчитанное по следующей формуле:

В случае обнаружения положительного отклонения в опорной точке центр инструмента смещается в сторону обрабатываемой поверхности, в случае обнаружения отрицательного отклонения - в обратном направлении.

Затем осуществляют обработку лопатки по скорректированной управляющей программе с последующим повторным контролем. Коррекция управляющей программы и последующая обработка повторяются несколько раз до достижения необходимой точности. Далее указанные действия повторяют для остальных лопаток блиска.

Таким образом, предлагаемый способ позволяет повысить точность обработки лопаток блиска газотурбинного двигателя за счет коррекции управляющей программы, учитывающей погрешности случайного характера.

Способ обработки лопатки блиска газотурбинного двигателя концевыми фрезами на станках с числовым программным управлением, включающий фрезерование профиля пера лопатки от вершины лопатки к радиусу перехода в ступицу, при этом съем металла ведут поочередно чередующимися со стороны корыта и спинки строками, измеренными по высоте пера лопатки, причем ширину первой строки выбирают меньшей или равной половине ширины последующей строки, а ширину последующих строк выбирают равной или меньшей ширины предыдущей строки из условия, что чередование строк не приводит к симметричному снятию металла со стороны корыта и спинки, за исключением обработки прикомлевого участка пера, и обеспечивает максимальную жесткость обрабатываемого пера лопатки, отличающийся тем, что в процессе обработки проводят промежуточный контроль погрешностей обработанной поверхности по совокупности опорных точек, полученных в результате определения контактным путем их фактических координат, по результатам которого осуществляют изменение базовой управляющей программы с учетом погрешностей случайного характера для обработки по скорректированной программе, при этом коррекцию управляющей программы и последующую обработку повторяют до достижения необходимой точности, причем указанную обработку осуществляют для каждой лопатки блиска.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера лопаток роторов концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ).

Изобретение относится к области машиностроения и может быть использовано на операциях шлифования, фрезерования лопаток газотурбинных двигателей. Изготовление лопатки осуществляют путем механической обработки заготовки по разработанной управляющей программе, которую ведут в несколько комбинируемых в зависимости от припусков этапов обработки, включающих: этап обработки хвостовика и прикорневого участка лопатки с закреплением ее за перо, этап шлифования абразивной лентой профиля пера лопатки с закреплением ее за хвостовик и управлением съемом металла путем изменения скорости подачи ленты или скорости вращения ленты, или обеих скоростей, этап фрезерования входной и выходной кромок пера или всего профиля пера заготовки лопатки по адаптированной траектории с учетом замеров прикромочной зоны пера в каждой точке контрольных сечений со стороны ее спинки и корыта и с определением величины припуска между контрольными точками для плавной стыковки зоны обработки и необрабатываемых поверхностей пера и этап удаления технологической прибыли на торце пера лопатки по управляющей программе.

Изобретение относится к режущим инструментам и может быть использовано для удаления материала с изделия. Головка имеет базовую поверхность, боковую и верхнюю области.

Изобретение относится к области изготовления лопаток турбомашин. Профиль лопасти лопатки определяют по цифровой теоретической модели.

Изобретение относится к обработке металлов резанием и может быть использовано при формировании криволинейных поверхностей лопаток цельнофрезерованного рабочего колеса газотурбинного двигателя на станках с числовым программным управлением.

Изобретение относится к способам чистовой обработки поверхности лопатки. Осуществляют обработку передней кромки и задней кромки, а также чистовую обработку участка корыта и участка спинки до поверхности лопатки лопаточного элемента.

Группа изобретений относится к машиностроению и может быть использована при фрезеровании деталей сложной пространственной формы. Способ включает построчное фрезерование сферической фрезой вращающейся заготовки на многокоординатном обрабатывающем центре с ЧПУ.

Изобретение относится к авиационной промышленности и может быть использовано для изготовления моноколес турбомашин. Способ включает последовательную черновую обработку концевыми фрезами верхних, средних и концевых участков лопаток и дальнейшую их чистовую обработку.

Изобретение относится к области авиадвигателестроения, в частности к технологии изготовления моноколес газотурбинных двигателей, преимущественно имеющих сложнопрофильные лопатки.

Изобретение относится к машиностроению и может быть использовано при обработке лопаток газотурбинного двигателя на многокоординатных фрезерных станках с числовым программным управлением.
Наверх