Способ производства компримированного природного газа на газораспределительной станции и бустер-компрессор с газовым приводом для реализации такого способа

Изобретение относится к газовой промышленности и может найти применение на газораспределительных станциях (ГРС). В месте поступления природного газа из магистральной сети в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом и с распределительным устройством. Направляют в бустер-компрессор природный газ из магистральной сети и используют этот газ одновременно в качестве приводного и компримируемого газов. В процессе работы бустер-компрессора производят компримированный природный газ и, одновременно с этим, отработанный природный газ из привода бустер-компрессора направляют потребителям в газораспределительную сеть. Ко входу распределительного устройства бустер-компрессора подключают двухпоточный теплообменный аппарат. Поток природного газа направляют в двухпоточный теплообменный аппарат, в котором подогревают этот поток перед подачей в распределительное устройство и газовый привод бустер-компрессора за счет рекуперации тепла адиабатического сжатия компримированного в бустер-компрессоре природного газа. Техническим результатом изобретения является повышение надежности работы бустер-компрессора. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к газовой промышленности, конкретно, к технологиям производства компримированного природного газа и может найти применение на газораспределительных станциях (ГРС).

Для получения сжиженного природного газа или для обеспечения работы автомобильных газовых наполнительных компрессорных станций возникает необходимость компримирования газа на давление большее, чем существует в магистральной сети.

Природный газ транспортируется по магистральным газопроводам с давлением, среднее значение которого составляет от 3,5 до 7,5 МПа. В регионах своего потребления от магистральных газопроводов по газопроводам-отводам он поступает на газораспределительные станции, в дроссельных устройствах которых происходит понижение его давления до потребителя от 0,6 до 1,2 МПа.

Известны промышленные компрессоры с пневмоприводами, каталог продукции фирмы Haskel (США) стр.10, раздел «Газовые бустеры с пневмоприводом» (https://www.haskel.com/wp-content/uploads/Haskel-Gas-Booster-Booklet-4-30-16.pdf) и каталог «Гидравлическое и пневматическое испытательное оборудование высокого давления» фирмы Maximator GmbH (Германия) стр. 11 (http://www.maximator.de/assets/mime/993e777b8b67789fe5508d0497a8a25a/MAXIMATOR%20Gas%20Boosters%2004-2007.pdf). Принцип работы поршневых компрессоров с пневматическим приводом (бустеров) основан на динамическом равновесии системы: поршень пневматического привода - поршень бустера. Силовой привод и управление построены на применении энергии сжатого воздуха. Причем управляющий воздух используется не только как источник энергии, но и как охлаждающая среда для отвода из системы тепла адиабатического сжатия.

Основным недостатком таких компрессоров является ограничение давления приводного газа, в качестве которого используется сетевой сжатый воздух под давлением не более 1 МПа, что значительно сужает функциональные возможности применения бустер-компрессора. Ограничение давления приводного газа обусловлено тем, что температура отработанного газа при понижении его давления за счет расширения падает, но при этом не должна понижаться ниже точкой росы содержащейся в газе влаги. Например, при адиабатическом расширении природного газа, находящегося под давлением 5 МПа, до атмосферного давления его температура падает более чем на 100°С. При этом конденсация влаги с последующим обмерзанием недопустимы для работы распределительных и регулирующих устройств, обеспечивающих работу поршневого компрессора с пневматическим приводом. Конденсация влаги с последующим обмерзанием существено снижают надежность работы бустер-компрессора. Кроме того, имеются нормативные ограничения по нижнему значению температуры отработанного газа в случае его поступления к сетевым потребителям и по верхнему значению температуры компримированного газа при его подаче в отводящий трубопровод. Ограничение давления приводного газа не позволяет уменьшить габариты бустер-компрессора, снижает эффективность технологического процесса производства компримированного газа в целом. Дополнительным недостатком таких компрессоров является то, что выделяющееся тепло адиабатического сжатия подвергается утилизации, т.е. оно не рекуперируется и не используется для повышения энергетической эффективности процесса производства компримированного газа.

Известен способ производства компримированного природного газа на газораспределительной станции и бустер-компрессор для реализации такого способа, патент RU 2641416, МПК F25J 1/00, опубл. 17.01.2018 г. При реализации известного способа дожимающий газовый бустер-компрессор с газовым приводом устанавливают на ГРС в месте поступления магистрального газа в газораспределительную сеть для получения компримированного газа из магистрального с использованием последнего и в качестве приводного, при этом газовый привод бустер-компрессора посредством распределительного устройства своими рабочими полостями сообщается либо с магистральной, либо с распределительной сетями.

Основным недостатком известного способа является отсутствие предварительного подогрева приводного газа перед подачей в привод бустер-компрессора, что влечет за собой ограничение по максимально допустимому давлению приводного газа, заметно снижает энергетическую эффективность процесса производства компримированного газа.

Целью изобретения является повышение энергетической эффективности процесса производства компримированного природного газа на газораспределительной станции, обеспечение возможности работы бустер-компрессора с газовым приводом при неограниченном значении давления приводного газа.

Техническим результатом изобретения являются разработка способа производства компримированного природного газа на газораспределительной станции, основанного на использовании в технологическом процессе бустер-компрессора с газовым приводом, повышение надежности работы бустер-компрессора, расширение его функциональных возможностей.

Поставленная цель (для способа) достигается тем, что в месте поступления природного газа из магистрального газопровода в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом с распределительным устройством, направляют через распределительное устройство в бустер-компрессор природный газ из магистрального газопровода и используют этот газ одновременно в качестве приводного и компримируемого газов, а отработанный природный газ из газового привода бустер-компрессора направляют потребителям в газораспределительную сеть. Ко входу распределительного устройства бустер-компрессора, последовательно, подключают один, но не ограничиваясь этим, двухпоточный теплообменный аппарат, при этом, поток природного газа из магистрального газопровода для работы газового привода бустер-компрессора направляют в двухпоточный теплообменный аппарат, в котором подогревают этот поток перед подачей в распределительное устройство и газовый привод бустер-компрессора за счет рекуперации выделяющегося тепла адиабатического сжатия компримированного в бустер-компрессоре природного газа.

Поставленная цель (для устройства) достигается тем, что бустер-компрессор содержит газовый привод, распределительное устройство, компрессионные полости и компрессионный поршень, трубопроводы подвода магистрального и отвода отработанного и произведенного компримированного природного газов, при этом, газовый привод бустер-компрессора соединен с магистральной и газораспределительной сетями подачи природного газа. Ко входу распределительного устройства бустер-компрессора, последовательно, подключен один, но не ограничиваясь этим, двухпоточный теплообменный аппарат, а выход трубопровода природного газа, отбираемого из магистрального газопровода для работы газового привода бустер-компрессора, подсоединен к первому входу двухпоточного теплообменного аппарата, первый выход которого соединен со входом распределительного устройства бустер-компрессора. Второй вход двухпоточного теплообменного аппарата подключен к выходу компрессионных полостей бустер-компрессора, а второй выход соединен с отводящим трубопроводом компримированного газа.

Предварительный подогрев приводного газа перед подачей в привод бустер-компрессора в двухпоточном теплообменном аппарате за счет рекуперации выделяющегося тепла адиабатического сжатия компримированного природного газа позволяет обеспечить минимально допустимые температуры отработанного газа при расширении и падении его давления перед прохождением через распределительные и регулирующие устройства и подачей в распределительную сеть, снижение температуры компримированного газа до допустимых значений. Одновременно, предварительный подогрев приводного газа перед подачей в привод бустер-компрессора позволяет уменьшить его потребный объемный расход для получения эквивалентного расхода компримированного природного газа, за счет чего дополнительно повышается быстродействие привода бустер-компрессора, расширяя его функциональные возможности и повышая эффективность технологического процесса в целом. Например, повышение температуры приводного газа на 100°С позволяет снизить более чем на 30% его потребный объемный расход для получения эквивалентного расхода компримированного природного газа.

Настоящее изобретение и его преимущества будут более понятны путем ссылки на последующее описание и прилагаемый чертеж. На фиг. 1 изображена схема установки дожимающего газового бустер-компрессора с газовым приводом в систему ГРС в месте поступления магистрального газа в газораспределительную сеть. В качестве примера взят двухсторонний одноступенчатый бустер-компрессор 1. Различные требуемые вспомогательные системы, такие как клапаны, смесители потоков, системы регулирования и датчики исключены из чертежа в целях упрощения и ясности представления. На фиг. 1:

1 - бустер-компрессор;

2 - магистральная сеть;

3 - двухпоточный теплообменный аппарат;

4 - распределительное устройство;

5, 8 - приводные полости бустера;

6, 7 - компрессионные полости бустера;

9 - газораспределительная сеть;

10 - отводящий трубопровод компримированного газа;

11 - компрессионный поршень.

При реализации способа производства компримированного природного газа на ГРС, в месте поступления природного газа из магистральной 2 сети в газораспределительную 9 сеть устанавливают бустер-компрессор 1 с газовым приводом, с распределительным устройством 4 таким образом, что в качестве приводного газа этого бустер-компрессора 1 используют природный газ из магистральной 2 сети. Предварительно подогревают приводной газ перед подачей в привод бустер-компрессора 1 в двухпоточном теплообменном аппарате 3 за счет рекуперации выделяющегося тепла адиабатического сжатия компримированного природного газа. Одновременно с этим, из магистральной 2 сети подают природный газ в этот бустер-компрессор 1 для производства компримированного газа, который затем направляют в отводящий трубопровод 10, распределяя на технологические нужды. Отработанный в приводе бустер-компрессора 1 природный газ направляют потребителям в газораспределительную сеть 9.

Бустер-компрессор 1 содержит распределительное устройство 4, приводные полости 5 и 8, компрессионные полости 6 и 7, образованные компрессионным поршнем 11. Посредством распределительного устройства 4, приводные полости 5 и 8 соответственно коммутируются с магистральной 2 или газораспределительной 9 сетями, обеспечивая возвратно-поступательное движение приводного поршня 11 с реверсом в крайних положениях. Природный газ из магистральной 2 сети постоянно подают через обратные клапана в компрессионные 6 и 7 полости бустер-компрессора 1. Компримированный газ из компрессионных 6 и 7 полостей через обратные клапана поступает в отводящий трубопровод компримированного газа 10. Теплообменник 3 установлен одной линией между магистральной сетью 2 и распределительным устройством 4, другой между выходом из компрессионных полостей 6 и 7 бустера 1 и отводящим трубопроводом компримированного газа 10.

Цикл работы бустер-компрессора 1 осуществляют следующим образом. В исходном положении природный газ из магистральной 2 сети (магистральный газ) под давлением 3,5÷7,5 МПа при температуре -10°С (нормативно минимально допустимая) через распределительное устройство 4 подают в приводную полость 5 поршня 11, принуждая его к движению за счет результирующего усилия. В компрессионной полости 6 газ сжимается до давления 25 Мпа, при этом его температура поднимается до +138°С. Проходя через двухпоточный теплообменный аппарат 3, компримированный газ нагревает приводной газ до температуры +110°С, при этом температура компримированного газа перед поступлением в отводящий трубопровод 10 падает до приемлемых +2°С. Одновременно, компрессионная полость 7 заполняется магистральным газом, а приводную полость 8 посредством распределительного устройства 4 соединяют с газораспределительной 9 сетью. Температура отработанного газа при его расширении падает с первоначальных +110°С до приемлемых +9°С. По достижении крайнего правого положения компрессионного поршня 11 происходит переключение распределительного устройства 4, приводную полость 5 соединяют с газораспределительной 9 сетью под давлением 0,6÷1,2 МПа и обеспечивают сброс в нее отработанного газа, направляя его потребителям, а в полость 8 подают магистральный газ под давлением 3,5÷7,5 МПа. Результирующее усилие на компрессионном поршне 11 обеспечивает его движение в крайнее левое положение, при этом газ в компрессионной полости 7 сжимается и через двухпоточный теплообменный аппарат 3 вытесняется в отводящий трубопровод 10. В двухпоточном теплообменном аппарате 3 происходят такие же теплообменные процессы, как и при движении поршня 11 в крайнее правое положение. По достижении крайнего левого положения компрессионного поршня 11 переключают распределительное устройство 4 и цикл работы бустер-компрессора 1 повторяют.

Таким образом, подключение в пневмосхему бустер-компрессора на ГРС как минимум одного дополнительного двухпоточного теплообменного аппарата для предварительного подогрева приводного газа перед подачей в привод бустер-компрессора за счет рекуперации выделяющегося тепла адиабатического сжатия компримированного природного газа в этом же теплообменном аппарате, обеспечивает минимально допустимые температуры отработанного газа при расширении и падение его давления перед прохождением через распределительные и регулирующие устройства и подачей в распределительную сеть. Это снимает ограничения давления приводного газа. Отсутствие ограничения давления приводного таза обуславливает саму возможность применения бустера с газовым приводом для получения компримированного природного газа на ГРС, расширяет функциональные возможности применения бустер-компрессора, способствует уменьшению его габаритов. Обеспечение значения температуры расширенного отработанного газа выше точки росы содержащейся в газе влаги повышает надежность работы бустер-компрессора.

В целом, применение бустер-компрессора с газовым приводом с одновременным использованием рекуперации выделяющегося тепла адиабатического сжатия компримированного природного газа для предварительного подогрева приводного газа значительно повышает энергетическую эффективность процесса производства

компримированного природного газа на газораспределительной станции.

1. Способ производства компримированного природного газа на газораспределительной станции, при котором в месте поступления природного газа из магистрального газопровода в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом с распределительным устройством, направляют через распределительное устройство в бустер-компрессор природный газ из магистрального газопровода и используют этот газ одновременно в качестве приводного и компримируемого газов, а отработанный природный газ из газового привода бустер-компрессора направляют потребителям в газораспределительную сеть, отличающийся тем, что ко входу распределительного устройства бустер-компрессора, последовательно, подключают один, но не ограничиваясь этим, двухпоточный теплообменный аппарат, при этом, поток природного газа из магистрального газопровода для работы газового привода бустер-компрессора направляют в двухпоточный теплообменный аппарат, в котором подогревают этот поток перед подачей в распределительное устройство и газовый привод бустер-компрессора за счет рекуперации выделяющегося тепла адиабатического сжатия компримированного в бустер-компрессоре природного газа.

2. Бустер-компрессор для реализации способа по п. 1, содержащий газовый привод, распределительное устройство, компрессионные полости и компрессионный поршень, трубопроводы подвода магистрального и отвода отработанного и произведенного компримированного природного газов, в котором газовый привод бустер-компрессора соединен с магистральной и газораспределительной сетями подачи природного газа отличающийся тем, что ко входу распределительного устройства бустер-компрессора, последовательно, подключен один, но не ограничиваясь этим, двухпоточный теплообменный аппарат, а выход трубопровода природного газа, отбираемого из магистрального газопровода для работы газового привода бустер-компрессора, подсоединен к первому входу двухпоточного теплообменного аппарата, первый выход которого соединен со входом распределительного устройства бустер-компрессора, при этом, второй вход двухпоточного теплообменного аппарата подключен к выходу компрессионных полостей бустер-компрессора, а второй выход соединен с отводящим трубопроводом компримированного газа.



 

Похожие патенты:

Изобретение относится к области вспомогательного компрессорного оборудования для транспортировки сжиженного природного газа, а именно к поршневым компрессорам, обеспечивающим откачку остаточных низкотемпературных паров сжиженного природного газа из транспортных либо стационарных емкостей сжиженного природного газа.

Группа изобретений относится к ремонту магистральных или распределительных газопроводов. Способ откачки газа из отключенного участка газопровода, заключающийся в том, что отключенный участок газопровода соединяют с компрессором 4 через трубопроводы и запорную арматуру и выполняют откачку газа до требуемого значения давления в отключенном участке газопровода.

Группа изобретений относится к газовой промышленности, а именно, к технологиям производства сжиженного природного газа и компримированного природного газа на газораспределительных станциях.

Изобретение относится к управлению компрессорными установками, преимущественно для шахтных предприятий горной промышленности. Установка содержит компрессор, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и дополнительными трубопроводами, которые снабжены клапанами, электрически связанными с блоком управления, и пневмосеть.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к вторичным и третичным методам увеличения нефтеотдачи пластов с пониженной нефтенасыщенностью, предусматривающим применение оборудования для выработки газообразного азота с высоким давлением и температурой.

Изобретение относится к компрессорной технике, преимущественно к передвижным компрессорным станциям с мембранными генераторами азота, для получения инертной газовой смеси на основе азота.

Изобретение относится к конструкции устройств для сжатия газа и может быть использовано в нефтегазовой, нефтеперерабатывающей, химической, нефтехимической и других отраслях промышленности для компримирования газов, содержащих легкие компоненты и пары малолетучих (тяжелых) компонентов (например, попутного нефтяного газа и природного газа), с получением сжатого газа и конденсата тяжелых компонентов, образующего, например, углеводородную и водную фазы.

Изобретение относится к области машиностроения, а именно к установкам для получения сжатого газа. .

Изобретение относится к устройствам для получения сжатого воздуха или газа и может быть использовано для обслуживания цехов в различных отраслях народного хозяйства.

Изобретение относится к области сжатия и перекачки газа и может найти применение при бурении, освоении и эксплуатации нефтяных и газовых скважин. Устройство для дожимания газа содержит вертикальную цилиндрическую компрессионную камеру 1 с расположенными в её верхней части всасывающими газовыми клапанами 2 и 3, и нагнетательным клапаном 4, и подводящим штуцером 5, расположенным в нижней части.

Изобретение относится к области сжатия и перекачки газа и может быть использовано при бурении, освоении и эксплуатации нефтяных и газовых скважин, а также для заправки автомобильного транспорта сжиженным газом.

Изобретение относится к области компрессостроения и может быть использовано для нагнетания газов повышенного давления и снабжения пневматических пластинчатых насосов, пневматических установок с заданным давлением газа для подъема жидкости из скважин.

Изобретение относится к компрессостроению и предназначено для создания повышенного давления газа большой производительности и для снабжения сжатым газом пневматических пластинчатых насосов, пневматических установок с заданным давлением газа.

Изобретение относится к области получения сжатых газов, а именно к установкам для получения сжатого газа с использованием погруженного в водоем электролизера. .

Изобретение относится к области машиностроения и может быть использовано в компрессорной технике для нагнетания газа под высоким давлением, например, для заправки им сельскохозяйственной техники или газовых накопительных емкостей.

Изобретение относится к области сжатия и перекачки газов и газожидкостных смесей и, в частности, представляет собой компрессор с гидрозатвором для квазиизотермического сжатия и перекачки газов и газожидкостных смесей преимущественно для газодобывающей промышленности.

Группа изобретений относится к области автомобилестроения, в частности к устройству для подачи сжатого воздуха к пневмоустройствам в автомобилях, в частности тормозным устройствам в автомобилях, в которых сжатый воздух отбирается из камеры сгорания цилиндра двигателя внутреннего сгорания посредством управляемого клапана.
Наверх