Вертикальный адсорбер для разделения бутановой фракции



Вертикальный адсорбер для разделения бутановой фракции
Вертикальный адсорбер для разделения бутановой фракции
B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2689570:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" (RU)

Изобретение относится к оборудованию для проведения адсорбционного разделения бутановой фракции на изобутан и н-бутан на адсорбенте расположенном вертикально по высоте адсорбера. Технической задачей, на решение которой направлено изобретение, является повышение производительности разделения бутановой фракции. Указанная задача достигается тем, что в вертикальном адсорбере для разделения бутановой фракции, содержащем цилиндрический корпус с крышкой и днищем, при этом в крышке смонтированы загрузочный люк, патрубок для подачи исходной смеси бутана с распределительной сеткой, патрубок для отвода н-бутана при десорбции и патрубок для предохранительного клапана, а в средней части корпуса установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложены два слоя сетки из нержавеющей стали, при этом слой адсорбента расположен между двумя слоями сетки из нержавеющей стали и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, при этом в корпусе расположен разгрузочный люк, а в днище смонтирован смотровой люк, патрубок для подачи метановой фракции при десорбции и патрубок для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении, который расположен на конической поверхности днища, согласно изобретению, адсорбер оборудован генератором облучения исходной смеси наносекундными электромагнитными импульсами, при этом электродами для облучения являются металлические сегменты, закрепленные на внутренней поверхности патрубка для подачи исходной смеси, контактирующие с поступающей исходной смесью и изолированные от патрубка, а мощность одного импульса составляет не менее 0,5 МВт. 2 ил.

 

Изобретение относится к оборудованию для проведения адсорбционного разделения бутановой фракции на изобутан и н-бутан на адсорбенте расположенном вертикально по высоте адсорбера.

Известен адсорбер, содержащий корпус с крышкой и днищем и расположенный между ними слой адсорбента, по а.с. СССР №516415, B01D 53/02 от 23.01.74.

Недостатком известного адсорбера является то, что он не обеспечивает высокой степени очистки или разделения газового потока от целевого компонента.

Близким техническим решением к заявляемому объекту является вертикальный адсорбер для разделения бутановой фракции, содержащий цилиндрический корпус с крышкой и днищем, при этом в крышке смонтированы загрузочный люк, патрубок для подачи исходной смеси бутана с распределительной сеткой, патрубок для отвода н-бутана при десорбции и патрубок для предохранительного клапана, а в средней части корпуса установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложены два слоя сетки из нержавеющей стали, при этом слой адсорбента расположен между двумя слоями сетки из нержавеющей стали и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, при этом в корпусе расположен разгрузочный люк, а в днище смонтирован смотровой люк, патрубок для подачи метановой фракции при десорбции и патрубок для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении, который расположен на конической поверхности днища, при этом к колосниковой решетке при помощи подшипников присоединен электромагнит, создающий виброколебания колосниковой решетки (Патент РФ на полезную модель №143812, опубл. 27.07.2014 г.).

Недостатком известного адсорбера считается неравномерность расположения слоя адсорбента по высоте при работе вибрирующей горизонтально колосниковой решетки, повышающей плотность загрузки к низу адсорбера, что затрудняет проход газа через насадку и частично снижает производительность в целом.

Технической задачей, на решение которой направлено изобретение, является повышение производительности разделения бутановой фракции.

Указанная задача достигается тем, что в вертикальном адсорбере для разделения бутановой фракции, содержащем цилиндрический корпус с крышкой и днищем, при этом в крышке смонтированы загрузочный люк, патрубок для подачи исходной смеси бутана с распределительной сеткой, патрубок для отвода н-бутана при десорбции и патрубок для предохранительного клапана, а в средней части корпуса установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложены два слоя сетки из нержавеющей стали, при этом слой адсорбента расположен между двумя слоями сетки из нержавеющей стали и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, при этом в корпусе расположен разгрузочный люк, а в днище смонтирован смотровой люк, патрубок для подачи метановой фракции при десорбции и патрубок для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении, который расположен на конической поверхности днища, согласно изобретению, адсорбер оборудован генератором облучения исходной смеси наносекундными электромагнитными импульсами, при этом электродами для облучения являются металлические сегменты, закрепленные на внутренней поверхности патрубка для подачи исходной смеси, контактирующие с поступающей исходной смесью и изолированные от патрубка, а мощность одного импульса составляет не менее 0,5 МВт.

Оборудование адсорбера генератором наносекундных электромагнитных импульсов позволяет производить облучение исходной смеси, что приводит к «технологическому ослаблению» исходной смеси, выражающееся в том, что происходит разрыв химически связей в структуре бутановой фракции под воздействием импульсов.

Сущность изобретения поясняется чертежом, на котором на фиг. 1 приведена конструкция адсорбера, а на фиг. 2 схема соединения сегментов с генератором.

Устройство вертикального адсорбера.

Вертикальный адсорбер имеет цилиндрический корпус 1 с коническими крышкой 2 и днищем 3. В крышке 2 смонтированы загрузочный люк 4, патрубок 5 для подачи исходной смеси - бутановой фракции и охлаждающего газа - азота через распределительную сетку 6, патрубок 7 для отвода н-бутана при десорбции и патрубок 8 для предохранительного клапана. В средней части корпуса установлены балки 9 с опорами 10, поддерживающими колосниковую решетку 11, на которой уложены два слоя сеток из нержавеющей стали 12. Слой адсорбента 13 (например, цеолит в виде гранул диаметром 3 мм) расположен между двумя слоями сеток из нержавеющей стали 12 и сеткой 14, на которой расположены грузы 15 для предотвращения уноса адсорбента 13 при десорбции. Выгрузка отработанного адсорбента 13 осуществляется через разгрузочный люк 16, установленный в корпусе. В днище 3 смонтирован смотровой люк 17 с патрубком 18 для отвода конденсата, патрубок 19 - для подачи метановой фракции при десорбции и патрубок 20 для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении. Устанавливается адсорбер на подставку при помощи опорного кольца 21. На внутренней поверхности патрубка 5 для подачи исходной смеси закреплены металлические сегменты 22 и 23. Сегменты 22 и 23 изолированы от патрубка 5 одним из известных способов (на рисунке не показано) и соединены с генератором 24 наносекундных электромагнитных импульсов (например ГНИ-01-1-6 [Крымский, В.В. Наносекундные электромагнитные импульсы и их применение / В.С.Белкин, В.А. Бухарин и др. / Под ред. В.В. Крымского. - Челябинск, 2000. - 110 с.]) проводами 25 и 26 соответственно. Прокладка 27 установлена для изоляции сегмента 22 от сегмента 23.

Адсорбер работает следующим образом.

Бутановая фракция на разделение подается в верхнюю часть аппарата через патрубок 5 для подачи исходной смеси через распределительную сетку 6. Одновременно с подачей исходной смеси включается генератор 24 и наносекундных электромагнитных импульсов и производится облучение смеси при ее движении в области расположения сегментов 22 и 23. Облучение исходной смеси наносекундными электромагнитными импульсами приводит к «технологическому ослаблению» исходной смеси, выражающееся в том, что происходит разрыв химически связей в структуре бутановой фракции под воздействием импульсов. Значение мощности одного импульса не менее 0,5 МВт гарантированно обеспечивает разрыв химических связей в бутановой фракции, так как энергия химических связей в бутановой фракции, как известно, может достигать величины 0,426 МВт (например, смотри http://chem21.info/info/592461/).

Облученная исходная смесь с ослабленной структурой через сетку 14 поступает в слой адсорбента 13 (например, цеолит в виде гранул диаметром 3 мм), где и происходит разделение исходной смеси на изобутан и н-бутан. Так как структура бутановой фракции уже предварительно «технологически ослаблена» за счет разрыва химических связей под воздействием наносекундных электромагнитных импульсов, то при прочих равных условиях ее разделение произойдет в более короткий момент времени, что позволяет повысить производительность процесса адсорбционного разделения бутановой фракции.

Изобутан перемещается сквозь слой адсорбента 13, сетки 12 и выводится из адсорбера через патрубок 20, а н-бутан удаляется из объема пор адсорбента 13 во время десорбции и отводится из адсорбера через патрубок 7. Десорбция осуществляется путем подачи метановой фракции на слой адсорбента 13 через патрубок 19. После десорбции отработанный адсорбент 13 удаляется через разгрузочный люк 16, а загружается через загрузочный люк 4.

В отличие от аналогов предлагаемое техническое решение позволяет повысить производительность процесса разделения бутановой фракции за счет оборудования адсорбера генератором наносекундных электромагнитных импульсов соединенным с металлическим сегментами, закрепленными на внутренней поверхности патрубка для подачи исходной смеси.

Вертикальный адсорбер для разделения бутановой фракции, содержащий цилиндрический корпус с крышкой и днищем, при этом в крышке смонтированы загрузочный люк, патрубок для подачи исходной смеси бутана с распределительной сеткой, патрубок для отвода н-бутана при десорбции и патрубок для предохранительного клапана, а в средней части корпуса установлены балки с опорами, поддерживающие колосниковую решетку, на которой уложены два слоя сетки из нержавеющей стали, при этом слой адсорбента расположен между двумя слоями сетки из нержавеющей стали и сеткой, на которой расположены грузы для предотвращения уноса адсорбента при десорбции, при этом в корпусе расположен разгрузочный люк, а в днище смонтирован смотровой люк, патрубок для подачи метановой фракции при десорбции и патрубок для отвода изобутана при адсорбции и отработавшего газа - азота при охлаждении, который расположен на конической поверхности днища, отличающийся тем, что адсорбер оборудован генератором облучения исходной смеси наносекундными электромагнитными импульсами, при этом электродами для облучения являются металлические сегменты, закрепленные на внутренней поверхности патрубка для подачи исходной смеси, контактирующие с поступающей исходной смесью и изолированные от патрубка, а мощность одного импульса составляет не менее 0,5 МВт.



 

Похожие патенты:

Изобретение относится к установкам для проведения учебных занятий по дисциплинам: «Техносферная безопасность», «Технологические процессы и загрязняющие выбросы», «Промышленная экология», «Охрана окружающей среды в теплотехнологиях».

Изобретение относится к катализатору окисления для обработки выхлопных газов, производимых дизельным двигателем, включающему носитель и каталитический слой, включающий первый подложечный материал носителя, палладий и платину.

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в хроматографическую колонку хроматографа, содержащую, по крайней мере, одну неподвижную фазу, выполненную из пористого материала, и последующее измерение концентраций разделенных компонентов смеси.

Изобретение относится к области рационального использования природных ресурсов и может быть использовано в газодобывающей, газоперерабатывающей, газохимической и других отраслях промышленности.

Описана выхлопная система, предназначенная для обработки выхлопных газов двигателя внутреннего сгорания. Система включает модифицированную ловушку NOx в условиях обедненной смеси (lean NOx trap - LNT), систему впрыска мочевины и катализатор аммиак-селективного каталитического восстановления.

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31.

Изобретение относится к области конструирования выпарного оборудования, конкретно к разработке лабораторного выпарного стенда с дистанционным обслуживанием для исследований выпарных операций в токсичных, радиохимических, фармацевтических и других производствах, требующих бесконтактного проведения процесса.

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Предложены способы и системы для обеспечения протекания отработавших газов через второй охладитель, расположенный ниже по потоку от первого охладителя и выше по потоку от впускной системы в канале рециркуляции отработавших газов, и извлечения конденсата для впрыска воды из конденсата в охлажденные отработавшие газы, покидающие второй охладитель. В одном примере, способ может включать в себя регулирование количества отработавших газов, протекающих через второй охладитель, на основе количества воды, хранящейся в резервуаре для воды в системе впрыска воды, и условий работы двигателя. Кроме того, способ может включать в себя выборочное протекание отработавших газов из второго охладителя к местоположению выше по потоку или ниже по потоку от компрессора в ответ на условия работы двигателя. 3 н. и 15 з.п. ф-лы, 9 ил.

Изобретение относится к химическим добавкам, применимым в качестве ингибиторов и поглотителей. В данном изобретении раскрыты удаляющие примеси и ингибирующие гидрат многофункциональные композиции, используемые в областях применения, относящихся к добыче, транспортировке, хранению и разделению сырой нефти и природного газа. Способ удаления примеси сероводорода и предотвращения образования гидратов в среде включает добавление многофункциональной композиции к среде. Многофункциональная композиция содержит поглотитель, ингибитор гидратообразования и, необязательно, кислоту. Изобретение обеспечивает эффективную очистку углеводородной продукции от сероводорода при одновременном предотвращении гидратообразования, уменьшении коррозии технологического оборудования, повышении экологической безопасности и снижении энергозатрат. 3 н. и 17 з.п. ф-лы, 2 ил.
Наверх