Способ изготовления склеивающей прокладки



Способ изготовления склеивающей прокладки
Способ изготовления склеивающей прокладки

Владельцы патента RU 2689593:

Автономная некоммерческая организация научно-технический центр "Электроизоляционные и фольгированные материалы" (АНО НТЦ "ЭЛИФОМ") (RU)
Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") (RU)

Изобретение относится к способу получения прокладок, склеивающих на основе эпоксидных смол и стеклотканей, применяемых для изготовления многослойных печатных плат, в том числе гибко-жестких. Для изготовления склеивающей прокладки осуществляют смешивание в мешалке растворителей - смеси толуола и ацетона в соотношении 1:1, тетраметилсилан. Эпоксидную смолу добавляют к смеси растворителей после их смешения при включенной мешалке. Затем добавляют сферические частицы бутадиеннитрилстиролкарбоксилатного полимера, кремнеорганическое вещество, 4,4’-диаминодифенилсульфон и ацетилацетонат. Осуществляют дальнейшее перемешивание компонентов при температуре 20-30°С до полного растворения эпоксидной смолы. Полученным раствором пропитывают стеклоткань, с последующей сушкой при температуре 240-243°С в течение 4-4,5 мин. Техническим результатом является улучшение свойств изготавливаемой склеивающей прокладки, выражающееся в снижении коробления многослойной печатной платы, изготовленной прессованием склеивающей прокладки между слоями платы при температуре (185±1)°С в течение 2 ч и давлении 12 МПа, возникающего после воздействия температуры (204±1)°С в течение 600±6 с, коробление не превышает 0,1 мм. 2 табл.

 

Изобретение относится к способам получения прокладок склеивающих на основе эпоксидных смол и стеклотканей, применяемых для изготовления многослойных печатных плат, в том числе гибко-жестких.

Известен способ получения препрега, описанный в патенте RU 2028322, в котором описан способ получения препрега на эпоксидном связующем, содержащем эпоксидную диановую смолу и отверждающую систему на основе аминного отвердителя холодного отверждения, включает раздельную пропитку волокнистого наполнителя компонентами связующего и сушку: предварительно осуществляют пропитку смолой, а затем отверждающей системой при массовом соотношении смолы и отвердителя в препреге 3,1-7,2:1 и количестве связующего, равным 32-77 мас. %. Применяют отверждающую систему, состоящую из воды и отвердителя при их массовом соотношении 1:1,5-1:2,5 соответственно. Применяют отверждающую систему, состоящую из матричного полимера, выбранного из группы, содержащей бустилат М, поливинилацетат и полиэтиленоксид, воды и отвердителя при их массовом соотношении 4:4:1,6-4:1:3 соответственно.

Недостатком аналога является высокое коробление многослойной печатной платы, изготовленной с применением склеивающей прокладки полученной данным способом.

Прототипом является способ пропитки раствором полимерной композиции с последующим удалением растворителя - сушкой, описанный в http://www.mosizolit.ru/tehnologii/, по которому в реактор при включенной мешалке последовательно загружают растворитель, эпоксидную смолу, отвердители, ускорители, наполнители, перемешивают до полного растворения эпоксидной смолы при температуре 20-30°С. Обычно концентрация раствора 40%.

Полученным раствором пропитывают стеклоткань, которую сушат при температуре 130-240°С в течение 4-10 мин.

Недостатком прототипа является высокое коробление многослойной печатной платы, изготовленной с применением склеивающей прокладки полученной этим способом.

Задачей изобретения является создание способа, который позволит улучшить свойства получаемых склеивающих прокладок, изготавливаемых с применением бутадиеннитрилстиролкарбоксилатного полимера и кремнеорганического вещества, в частности снизить показатель коробления многослойных печатных плат возникающего после воздействия температуры (204±1)°С в течение 600±6 с.

Сущность данного изобретения заключается в изменении традиционного состава растворителей, а именно, введение химически нейтрального кремнеорганического вещества тетраметилсилана в качестве растворителя.

Осуществление способа:

1. В реактор при включенной мешалке последовательно загружают (масс. ч):

- растворитель - смесь толуола и ацетона в соотношении 1:1-100;

- растворитель - тетраметилсилан - в количестве согласно примерам 1-3;

- эпоксидную диановую смолу - 100;

- сферические частицы бутадиеннитрилстиролкарбоксилатного полимера - 2,2;

- кремнеорганическое вещество

ди[окси{три(метилфенилсилокси)}]ди[окси{три(дифенилсилокси)}]титан - 3

- 4,4'-диаминодифенилсульфон - 14;

- ацетилацетонат никеля - 0,4.

2. Перемешивают до полного растворения эпоксидной смолы при температуре 20-30°С.

3. Полученным раствором пропитывают стеклоткань (130 масс. ч.).

4. Пропитанную раствором стеклоткань сушат при температуре 130-240°С в течение 4-10 минут.

В процессе сушки стеклоткани растворители - тетраметилсилан и смесь толуола и ацетона, улетучиваются и в составе склеивающей прокладки не остаются, благодаря их воздействию в процессе пропитывания стеклоткани, склеивающая прокладка приобретает улучшенные характеристики, что выражается в снижении коробления конечного изделия - многослойной печатной платы. Нижняя граница температурного диапазона сушки связана с тем, что при температуре ниже 20°С снижается вязкость раствора, что осложняет процесс перемешивания до полного растворения компонентов, а также дальнейшей пропитки раствором стеклоткани, это приводит к увеличению процента заводского брака при изготовлении склеивающих прокладок. При температуре выше 30°С ацетон интенсивно испаряется что ведет к изменению соотношения растворителей ацетон:толуол и изменению свойств склеивающей прокладки.

Применяемый в составе бутадиеннитрилстиролкарбоксилатный полимер представляет собой порошок сферических частиц полимера субмикронного размера (от 10-8 до 10-7 м) сополимера бутадиена, нитрила акриловой кислоты, стирола, метакриловой кислоты диаметром от 10-8 до 10-7 м, количество элементарных звеньев бутадиена составляет 60-80, количество элементарных звеньев нитрила акриловой кислоты составляет 45-60, количество элементарных звеньев стирола составляет 18-24, количество элементарных звеньев метакриловой кислоты составляет 1, а кремнеорганическое вещество ди[окси{три(метилфенилсилокси)}]ди[окси{три(дифенилсилокси)}]титана имеет общую формулу [HO(CH3C6H5SiO)3]2Ti{[OSi(C6H5)2]3OH}2.

Сушка пропитанной стеклоткани при температуре 240-243°С в течение 4-4,5 минут способствует быстрому принятию склеивающей прокладкой необходимых свойств, при этом сохраняя ее клейкость, что позволяет добиться максимального эффекта в снижении коробления многослойной печатной платы, примеры разных режимов сушки приведены в таблице 1 (проверка выполнялась на склеивающих прокладках, изготовленных по примеру 2).

Для сравнения способов получения склеивающей прокладки, было проведено испытание, в результате которого склеивающую прокладку изготовили по способам, описанным в аналоге и прототипе, а также три раза по вновь разработанному способу, с добавлением разного количества тетраметилсилана. Далее из полученных склеивающих прокладок вырезаются листы размером 200×200 мм, помещают два листа между слоями печатной платы и прессуют при температуре (185±1)°С в течение 2 часов и давлении 12 МПа, после чего печатную плату подвергают воздействию температуры (204±1)°С в течение 600±6 с.

Затем замеряют возникшее коробление многослойной печатной платы.

Пример 1. Получение склеивающей прокладки по предлагаемому к охране способу, с применением растворителя тетраметилсилан количестве 0,4 масс. ч.

Пример 2. Получение склеивающей прокладки по предлагаемому к охране способу, с применением растворителя тетраметилсилан количестве 0,6 масс. ч.

Пример 3. Получение склеивающей прокладки по предлагаемому к охране способу, с применением растворителя тетраметилсилан количестве 0,8 масс. ч.

Пример 4. Изготовление склеивающей прокладки по способу, описанному в аналоге.

Пример 5. Изготовление склеивающей прокладки по способу, описанному в прототипе.

Результаты испытаний препрега и аналогов приведены в таблице 2.

Технический результатом является улучшение свойств изготавливаемой склеивающей прокладки, выражающееся в снижении коробления многослойной печатной платы, изготовленной прессованием склеивающей прокладки между слоями платы при температуре (185±1)°С в течение 2 часов и давлении 12 МПа возникающего после воздействия температуры (204±1)°С в течение 600±6 с, коробление не превышает 0,1 мм.

По существу способ изготовления склеивающей прокладки заключается в смешивании в мешалке растворителей - смеси толуола и ацетона в соотношении 1:1 и последующим добавлением тетраметилсилана, массовая доля которого составляет 0,4-0,8% от общей массы растворителей толуола и ацетона, которая равна массе эпоксидной диановой смолы, которая после смешения растворителей добавляется к смеси растворителей при включенной мешалке, после чего добавляется сферические частицы бутадиеннитрилстиролкарбоксилатного полимера, кремнеорганическое вещество

ди[окси{три(метилфенилсилокси)}]ди[окси(три(дифенилсилокси)}]титан,

4,4'-диаминодифенилсульфон и ацетилацетонат никеля масса которых составляет 2,2%, 3%, 14% и 0,4% соответственно от массы эпоксидной диановой смолы, с дальнейшим перемешиванием при температуре 20-30°С до полного растворения смолы, полученным раствором пропитывается стеклоткань, с последующей сушкой при температуре 240-243°С в течение 4-4,5 минут, соблюдая следующую последовательность действий:

I. В реактор при включенной мешалке последовательно загружают (масс. ч.):

- растворитель - толуол - 50;

- растворитель - ацетон - 50;

- растворитель - тетраметилсилан - 0,4-0,8;

- эпоксидную диановую смолу - 100;

- сферические частицы бутадиеннитрилстиролкарбоксилатного полимера - 2,2;

- кремнеорганическое вещество

ди[окси{три(метилфенилсилокси)}]ди[окси{три(дифенилсилокси)}]титан - 3;

- 4,4'-диаминодифенилсульфон - 14 и ацетилацетонат никеля - 0,4.

II. Перемешивают до полного растворения эпоксидной диановой смолы при температуре 20-30°С.

III. Полученным раствором пропитывают стеклоткань (130 масс. ч.).

IV. Пропитанную раствором стеклоткань сушат при температуре 240-243°С в течение 4-4,5 минут.

Способ изготовления склеивающей прокладки, заключающийся в смешивании в мешалке растворителей - смеси толуола и ацетона в соотношении 1:1 и последующим добавлением тетраметилсилана, массовая доля которого составляет 0,4-0,8% от общей массы растворителей толуола и ацетона, которая равна массе эпоксидной диановой смолы, которая после смешения растворителей добавляется к смеси растворителей при включенной мешалке, после чего добавляются сферические частицы бутадиеннитрилстиролкарбоксилатного полимера, кремнеорганическое вещество ди[окси{три(метилфенилсилокси)}]ди[окси(три(дифенилсилокси)}]титан, 4,4'-диаминодифенилсульфон и ацетилацетонат никеля, масса которых составляет 2,2%, 3%, 14% и 0,4% соответственно от массы эпоксидной диановой смолы, с дальнейшим перемешиванием при температуре 20-30°С до полного растворения смолы, полученным раствором пропитывается стеклоткань, с последующей сушкой при температуре 240-243°С в течение 4-4,5 мин, соблюдая следующую последовательность действий:

I. В реактор при включенной мешалке последовательно загружают (мас. ч.):

- растворитель - толуол - 50;

- растворитель - ацетон - 50;

- растворитель - тетраметилсилан - 0,4-0,8;

- эпоксидную диановую смолу - 100;

- сферические частицы бутадиеннитрилстиролкарбоксилатного полимера - 2,2;

- кремнеорганическое вещество ди[окси{три(метилфенилсилокси)}]ди[окси{три(дифенилсилокси)}]титан - 3;

- 4,4'-диаминодифенилсульфон - 14 и ацетилацетонат никеля - 0,4.

II. Перемешивают до полного растворения эпоксидной диановой смолы при температуре 20-30°С.

III. Полученным раствором пропитывают стеклоткань (130 мас. ч.).

IV. Пропитанную раствором стеклоткань сушат при температуре 240-243°С в течение 4-4,5 мин.



 

Похожие патенты:

Изобретение относится к резиновой промышленности, в частности к производству эластомерных материалов уплотнительного назначения, и может быть использовано для внутреннего слоя уплотнительных элементов в составе водонефтенабухающих пакеров, применяемых в нефтегазодобывающей промышленности.

Изобретение относится к способу получения композиции для модификации 1,4-цис-полидиенов. Описан способ получения композиции для модификации 1,4-цис-полидиенов путем взаимодействия по меньшей мере одного соединения, выбранного из группы аминов, и по меньшей мере одного соединения, выбранного из группы хиноловых эфиров.
Изобретение относится к огнестойкой полимерной композиции. Вулканизованная полимерная композиция содержит безгалогеновый олефиновый эластомер, который содержит насыщенную основную цепь и присутствует в количестве более чем 70 ч./сто ч.

Изобретение относится к резиновой промышленности, в частности к производству эластомерных материалов уплотнительного назначения, и может быть использовано для внешнего слоя уплотнительных элементов в составе водонефтенабухающих пакеров, применяемых в нефтегазодобывающей промышленности.

Изобретение относится к нешипованной зимней шине. Нешипованная зимняя шина включает протектор, выполненный из резиновой смеси, включающей каучуковый компонент, содержащий натуральный каучук и модифицированный полимер сопряженных диенов, вулканизирующий агент и диоксид кремния в количестве 10-75 масс.

Изобретение относится к тройным пропилен-этилен-диеновым сополимерам для композиций протектора шины. Композиция протектора шины содержит компоненты, мас.

Изобретение относится к каучуковой композиции для шин. Каучуковая композиция для шин содержит на 100 частей по массе диенового каучука от 5 до 120 частей по массе углеродной сажи, имеющей удельную площадь поверхности по адсорбции азота N2SA не более 90 м2/г и абсорбцию дибутилфталата-ДБФ сжатого образца (24M4) от 95 до 120 мл/100 г, отношение ΔDst/Dst полуширины ΔDst (нм) модального диаметра Dst к модальному диаметру Dst (нм) на кривой массового распределения диаметров по Стоксу агрегатов углеродной сажи, составляющее по меньшей мере 0,65, при этом N2SA, (24M4) и Dst удовлетворяют следующей формуле: (24M4)/Dst < 0,0093 × N2SA - 0,06.

Настоящее изобретение относится к производству синтетических каучуков, применяемых в производстве шин, резинотехнических изделий, в электротехнической и других областях, а именно к способу получения сополимеров на основе сопряженных диенов, сополимерам, полученным данным способом, и резиновым смесям на основе полученных сополимеров.

Изобретение относится к области противокоррозионных композиций для покрытия, предназначенных для защиты железных и стальных конструкций, а также к набору для получения данной композиции, к металлической конструкции, покрытой композицией, и способу ее нанесения.

Изобретение относится к олигомерным органосиланам, применяемым в резиновых смесях. Предложены олигомерные органосиланы, содержащие по меньшей мере два разных структурных звена в одной молекуле, выбранных из структурных звеньев А, В, С и D и соединенных в любую линейную, разветвленную или циклическую структуру, при этом по меньшей мере одна группа R, R1, R2, R3, R4 или R7 представляет собой группу простого алкилового полиэфира -O-(R5-O)m-R6.

Изобретение относится к оборудованию для приготовления и подачи связующего на основе термореактивной смолы, используемого при изготовлении полимерных композиционных материалов с помощью технологии инжекции связующего в закрытую форму или методом вакуумной инфузии.

Изобретение относится к огнестойким, агрессивостойким, электроизоляционным материалам на основе эпоксидных олигомеров, применяемых в радиоэлектронике и компьютерной технике.

Изобретение относится к полимерной промышленности и может быть использовано для создания полимерных композиционных материалов, используемых в строительной индустрии, в системах внешнего армирования для усиления и ремонта конструкций.

Изобретение относится к эпоксидным композициям и может быть использовано для изготовления крупногабаритных изделий и изделий сложной формы, в том числе оснастки из полимерных композиционных материалов (ПКМ), методом вакуумной инфузии и может найти применение в аэрокосмической, автомобильной, судостроительной и других отраслях промышленности.

Изобретение относится к твердому изоляционному материалу. Описан твердый изоляционный материал, который вместе с безангидридным пропиточным составом на основе эпоксидной смолы может быть использован для изготовления системы изоляции в способе вакуумного импрегнирования, причем он включает подложку, барьерный материал, катализатор отверждения и клей липкой ленты, причем катализатор отверждения и клей липкой ленты являются инертными по отношению друг к другу, но в условиях вакуумного импрегнирования активируются, взаимодействуя с безангидридным пропиточным составом на основе эпоксидной смолы, при временах гелеобразования от 1 часа до 15 часов при температуре импрегнирования, причем катализатор отверждения представляет собой производное диимидазола с ковалентной мостиковой связью и/или производное дипиразола с ковалентной мостиковой связью.

Изобретение относится к многослойной металлической подложке с покрытием, включающей металлическую подложку; первую отверждающуюся пленкообразующую композицию, нанесенную на указанную металлическую подложку; и вторую отверждающуюся пленкообразующую композицию, нанесенную поверх, по меньшей мере, части первой отверждающейся пленкообразующей композиции.

Изобретение относится к отвердителям для эпоксидных смол и их применению в отверждающихся эпоксидных смолах. Предложено применение метилен-бис-анилина в качестве отверждающего агента для эпоксидных смол, где соединение метилен-бис-анилина имеет формулу (I), где а) R1, R2, R3, R4, R1', R2', R3' и R4' независимо выбраны из водорода; С1-С6-алкокси, необязательно в сочетании по меньшей мере с двумя из R1, R2, R3, R4, R1', R2', R3' и R4', выбираемыми из С1-С6 алкила, где алкильная группа является линейной или разветвленной и необязательно замещенной; галогена, амида, сложного эфира или фторалкила, b) по меньшей мере один из R1, R2, R3, R4, R1', R2', R3' и R4' является С1-С6-алкокси-группой, с) соединение метилен-бис-анилина является асимметричным и содержит только алкокси-группу в одном кольце или только одну алкокси-группу в каждом кольце анилина или соединение метилен-бис-анилина является симметричным и содержит два заместителя, один из которых представляет собой алкокси-группу в каждом кольце анилина, где соединение метилен-бис-анилина выбрано из структур (II), d) соединение метилен-бис-анилина содержит по меньшей мере один алкоксильный заместитель и является жидким при 20°С и е) соединение метилен-бис-анилина не представляет собой 4,4’-метилен-бис(2-метоксианилин).

Изобретение относится к составам покрытия, к способам их изготовления и к способам нанесения данных составов покрытия. Способ нанесения покрытия на протяженное трубчатое изделие включает: (a) нагревание протяженного металлического трубчатого изделия; (b) нанесение на протяженное металлическое трубчатое изделие наплавляемого эпоксидного покрытия; (c) нанесение на наплавляемое эпоксидное покрытие состава покрытия; при этом состав покрытия представляет собой расплавленную смесь из следующих компонентов: (i) эпоксидной маточной смеси, (ii) маточной смеси наполнителя, (iii) отверждающей маточной смеси, (iv) полиолефина и, при необходимости, (v) усилителя адгезии, и/или черного или белого концентрата, и/или резины, такой как, например, Kraton G-1657; при этом эпоксидная маточная смесь содержит, мас.%: свыше 50% твердой отверждаемой эпоксидной смолы; 20-40% полиэтилена; 0,1-5% твердого усилителя адгезии; 10-15% полимера, обеспечивающего совместимость; 0-3% наполнителя; при необходимости 1-5% черного концентрата; при необходимости 0,2-1,5% УФ-стабилизатора; при необходимости 0,2-1,5% антиоксиданта; и при этом маточная смесь наполнителя содержит, мас.%: 30-50% полиэтилена или полипропилена; свыше 50% наполнителя; 1-5% полимера, обеспечивающего совместимость; 0,5-2,0% твердого усилителя адгезии; при необходимости 0,2-1,5% УФ-стабилизатора и/или антиоксиданта; при необходимости 1-5% черного концентрата; при необходимости 3-15% резины и при необходимости 3-15% стеклянных волокон или шариков; и при этом отверждающая маточная смесь содержит, мас.%: 10-20% полиэтилена; 70-80% полиолефинового сополимера; 1-10% отверждающего агента и 1-10% наполнителя Данное покрытие можно применять в качестве антикоррозионного покрытия трубы, которую применяют в трубопроводах для нефти, газа и воды.
Изобретение относится к области электротехники и может быть использовано при создании материалов с магнитными свойствами, подвергающихся сложной механической обработке в отвержденном состоянии.

Изобретение относится к области противокоррозионных композиций для покрытия, предназначенных для защиты железных и стальных конструкций, а также к набору для получения данной композиции, к металлической конструкции, покрытой композицией, и способу ее нанесения.

Изобретение относится к функционализованным азокарбонилом силанам общей формулы (I) (R1)3-a(R2)aSi-RI-NH-C(O)-N=N-R4. Функционализованные азокарбонилом силаны получают способом, при осуществлении которого на первой стадии гидразин формулы H2N-NH-R4 подвергают взаимодействию с изоцианатосиланом общей формулы (R1)3-a(R2)aSi-RI-NCO и на второй стадии полученный на первой стадии продукт окисляют окислителем или на первой стадии гидразин формулы H2N-NH-R4 подвергают взаимодействию с ацилгалогенидом общей формулы Cl-C(O)-O-R5, на второй стадии полученный на первой стадии продукт окисляют окислителем и на третьей стадии полученный на второй стадии продукт подвергают взаимодействию с аминосиланом общей формулы (R1)3-a(R2)aSi-RI-NH2.

Изобретение относится к способу получения прокладок, склеивающих на основе эпоксидных смол и стеклотканей, применяемых для изготовления многослойных печатных плат, в том числе гибко-жестких. Для изготовления склеивающей прокладки осуществляют смешивание в мешалке растворителей - смеси толуола и ацетона в соотношении 1:1, тетраметилсилан. Эпоксидную смолу добавляют к смеси растворителей после их смешения при включенной мешалке. Затем добавляют сферические частицы бутадиеннитрилстиролкарбоксилатного полимера, кремнеорганическое вещество, 4,4’-диаминодифенилсульфон и ацетилацетонат. Осуществляют дальнейшее перемешивание компонентов при температуре 20-30°С до полного растворения эпоксидной смолы. Полученным раствором пропитывают стеклоткань, с последующей сушкой при температуре 240-243°С в течение 4-4,5 мин. Техническим результатом является улучшение свойств изготавливаемой склеивающей прокладки, выражающееся в снижении коробления многослойной печатной платы, изготовленной прессованием склеивающей прокладки между слоями платы при температуре °С в течение 2 ч и давлении 12 МПа, возникающего после воздействия температуры °С в течение 600±6 с, коробление не превышает 0,1 мм. 2 табл.

Наверх