Электрический реактивный движитель




Владельцы патента RU 2689663:

Хаметов Рустам Саидович (RU)
Иванов Константин Александрович (RU)
Пьянков Кирилл Сергеевич (RU)
Бендерский Геннадий Петрович (RU)
АО "Пространственные системы информации" (АО "ПСИ") (RU)

Изобретение относится к устройствам создания реактивной тяги, конкретно к электрическим реактивным движителям (ЭРД). ЭРД содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья 1, воздухозаборник 2, направляющие лопатки 3, многолопастную крыльчатку 4 с приводом от вентильного электродвигателя 5, а также реактивное сопло 6. Внутри сопла 6 условлено центральное тело 7, закрепленное внутри сопла 6 спрямляющими лопатками 8. На внешней поверхности центрального тела 7 в воздушно-реактивной струе ЭРД установлены рули 9, а внутри тела 7 - рулевые машинки 10, кинематически соединенные с рулями 9. Такое конструктивное исполнение ЭРД позволяет управлять угловым направлением его вектора тяги, компенсировать положение струйных рулей остаточной закрутки реактивной струи ЭРД, препятствуя его угловому вращению и образованию крена. В целом указанные технические преимущества позволяют повысить надежность управления ЭРД и обеспечить достижение заявленного технического результата и решение поставленной задачи. 4 ил.

 

Изобретение относится к устройствам создания реактивной тяги, конкретно к электрическим реактивным движителям.

Известен электрический реактивный движитель (ЭРД) /RU 2015151255/, содержащий последовательно и соосно установленные по течению воздушного потока дельтовидные крылья, воздухозаборник, направляющие лопатки, многолопастную крыльчатку с приводом от вентильного электродвигателя, а также реактивное сопло, внутри которого условлено центральное тело, закрепленное внутри сопла спрямляющими лопатками.

Техническим недостатком известного ЭРД /RU 2015151255/ является недостаточная надежность управления, связанная с образованием крена из-за недостаточной компенсации спрямляющим лопатками энергии вращения струи многолопастной крыльчатки и с отсутствием возможности управления угловым направлением тяги ЭРД.

Задачей и техническим результатом изобретения является повышение надежности управления ЭРД.

Сущность изобретения.

Достижение заявленного технического результата и решение поставленной задачи обеспечивается тем, что электрический реактивный движитель (ЭРД) содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья, воздухозаборник, направляющие лопатки, многолопастную крыльчатку с приводом от вентильного электродвигателя, а также реактивное сопло. Внутри сопла условлено центральное тело, закрепленное внутри сопла спрямляющими лопатками.

Согласно изобретению ЭРД дополнительно содержит рулевые пластины и рулевые машинки управления вектором тяги движителя, причем рулевые пластины установлены на внешней поверхности центрального тела в воздушно-реактивной струе ЭРД за срезом сопла, а рулевые машинки - внутри центрального тела и кинематически соединены с рулевыми пластинами.

При этом дельтовидные крылья и направляющие лопатки установлены с равномерным угловым шагом, а их задние кромки разнесены вдоль продольной оси воздухозаборника на величину, не меньшую чем размер хорды профиля направляющей лопатки. Дельтовидные крылья выполнены с загибом задней кромки против направления вращения многолопастной крыльчатки. Многолопастная крыльчатка установлена на валу вентильного электродвигателя между направляющими и спрямляющими лопатками.

Введение рулевых пластин и рулевых машинок управления вектором тяги движителя, установка рулевых пластин на внешней поверхности центрального тела в воздушно-реактивной струе ЭРД за срезом сопла, а также установка рулевых машинок - внутри центрального тела и кинематическое соединение их с рулевыми пластинами позволяют обеспечить управление осевым кручением корпуса движителя, изменять угловое направление вектора тяги, компенсировать рулевыми пластинами остаточную закрутку реактивной струи ЭРД, препятствуя его вредному для управления угловому вращению и образованию крена.

Рациональный выбор параметров ЭРД, а именно выполнение дельтовидных крыльев с загибом задней кромки против направления вращения многолопастной крыльчатки, установка их и направляющих лопаток с равномерным угловым шагом, разнесение их задних кромок вдоль продольной оси воздухозаборника на величину, не меньшую чем размер хорды профиля направляющей лопатки, а также установка многолопастной крыльчатки на валу вентильного электродвигателя между направляющими и спрямляющими лопатками дополнительно позволяют снизить кручение реактивной струи и ее вредное влияние на кручение корпуса движителя и управление его пространственным положением.

В целом указанные технические преимущества позволяют повысить надежность управления ЭРД и обеспечить достижение заявленного технического результата и решение поставленной задачи.

Сущность изобретения поясняется рисунками, представленными на фиг. 1-фиг. 4.

На фиг. 1 - представлен рисунок, поясняющий конструкцию ЭРД, на фиг. 2 - вид сечения «А-А» ЭРД в месте расположения воздухозаборника 2, на фиг. 3 - вид сечения «В-В» ЭРД в месте расположения многолопастной крыльчатки 4, на фиг. 4 - вид сечения «В-В» ЭРД в месте расположения направляющих 3 и спрямляющих 8 лопаток.

На фиг. 1-4 обозначены:

1 - дельтовидные крылья;

2 - воздухозаборник;

3 - направляющие лопатки;

4 - многолопастная крыльчатка (винт);

5 - вентильный электродвигатель;

6 - сопло;

7 - центральное тело;

8 - спрямляющие лопатки;

9 - рулевые пластины (рули управления направлением тяги воздушного реактивного потока крыльчатки 4);

10 - рулевые машинки;

11 - контейнер;

12 - спасательный парашют.

Согласно фиг. 1-фиг. 4 ЭРД содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья 1, воздухозаборник 2, направляющие лопатки 3, многолопастную крыльчатку 4 с приводом от вентильного электродвигателя 5, а также реактивное сопло 6. Внутри сопла 6 условлено центральное тело 7, закрепленное внутри сопла 6 спрямляющими лопатками 8. На внешней поверхности центрального тела 7 в воздушно-реактивной струе ЭРД установлены рулевые пластины 9, а внутри тела 7 - рулевые машинки 10, кинематически соединенные со струйными рулями 9.

При этом дельтовидные крылья 1 и направляющие лопатки 3 установлены с равномерным угловым шагом, а их задние кромки разнесены вдоль продольной оси воздухозаборника 2 на величину, не меньшую чем размер хорды профиля направляющей лопатки 3.

Для компенсации вращающего момента крыльчатки 4 на корпус ЭРД дельтовидные крылья 1 выполнены с загибом задней кромки против направления вращения многолопастной крыльчатки 4.

Для повышения управляемости ЭРД рулевые пластины 9 установлены на внешней поверхности центрального тела 7 за срезом сопла 6. Для послеполетного спасения ЭРД в его теле 7 может быть установлен контейнер 11 для размещения спасательного парашюта 12.

Предлагаемый ЭРД работает следующим образом.

При включении вентильного электродвигателя 5, запитываемого от блока бортовых аккумуляторных батарей (на фигурах не показано), крыльчатка 4 практически мгновенно набирает обороты вращения, необходимые для создания необходимой тяги ЭРД. ЭРД взлетает. При этом крыльчатка 4 своими лопастями втягивает наружный воздух из встречного набегающего потока через окна между спрямляющими лопатками 8 и выбрасывает его через сопло 6, образуя на его выходе воздушно-реактивную струю с направлением углового вращения, совпадающего с направлением вращения крыльчатки 4. Встречный поток воздуха, взаимодействует с дельтовидными крыльями 1, расположенными вдоль оси ЭРД и с концами, загнутыми в сторону противоположную вращения крыльчатки, препятствуя вращению ЭРД вдоль его оси и образованию углового крена ЭРД.

Одновременно с помощью направляющих 3 и спрямляющих 8 лопаток вращающийся поток воздуха преобразуется в линейный поток на выходе сопла 6. Рулевые пластины 9 обдуваемые реактивной струей воздуха меняя свое угловое положение от рулевой машинки 10 управления имеют возможность управлять угловым направлением реактивной струи ЭРД и дополнительно компенсировать рулевой машинкой 10 от блока управления ЭРД (на фигурах не показано) остаточное вращение реактивной струи, вызывающей вращение и крен ЭРД в процессе его полета.

Данное изобретение не ограничивается представленным примером его осуществления. В рамках данного изобретения возможны и другие варианты его исполнения. Так, например, вместо аккумуляторных батарей электропитания вентильного электродвигателя 5 могут быть использованы накопительные конденсаторы электрического тока, водородные и другие малогабаритные источники электричества.

Изобретение разработано на уровне опытного образца и технических предложений по его применению.

Электрический реактивный движитель (ЭРД), содержащий последовательно и соосно установленные по течению воздушного потока дельтовидные крылья, воздухозаборник, направляющие лопатки, многолопастную крыльчатку с приводом от вентильного электродвигателя, а также реактивное сопло, внутри которого установлено центральное тело, закрепленное внутри сопла спрямляющими лопатками, отличающийся тем, что он дополнительно содержит рулевые пластины и рулевые машинки управления вектором тяги движителя, причем рулевые пластины установлены на внешней поверхности центрального тела в воздушно-реактивной струе ЭРД за срезом сопла, а рулевые машинки - внутри центрального тела и кинематически соединены с рулевыми пластинами, дельтовидные крылья и направляющие лопатки установлены с равномерным угловым шагом, а их задние кромки разнесены вдоль продольной оси воздухозаборника на величину, не меньшую чем размер хорды профиля направляющей лопатки, причем дельтовидные крылья выполнены с загибом задней кромки против направления вращения многолопастной крыльчатки, многолопастная крыльчатка установлена на валу вентильного электродвигателя между направляющими и спрямляющими лопатками.



 

Похожие патенты:

Решетчатая аэродинамическая поверхность содержит силовую раму, состоящую из двух боковин, корневого и концевого планов в виде металлических пластин, и опоры крепления силовой рамы к механизму управления решетчатой аэродинамической поверхностью.

Изобретение относится к военной технике и может быть использовано для построения систем управления авиабомбами различного назначения. Способ управления планирующей авиабомбой основан на измерении скорости полета авиабомбы с помощью датчиков давления и температуры, установленных в носовой части бомбы.

Изобретение относится к производству и применению боеприпасов и может быть использовано в любом огнестрельном оружии (стрелковом, артиллерийском), в электромагнитных ускорителях, а также для подводного применения.

Предлагается устройство, обеспечивающее достижение сверхзвуковых скоростей снарядов малой массы (включая спутники Земли). Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) головной части (ГЧ) за счет аэродинамического торможения ЛА на конечном атмосферном участке траектории (КАУТ).

Изобретение относится к производству и применению боеприпасов и может быть использовано в любом огнестрельном оружии (стрелковом, артиллерийском), в электромагнитных ускорителях, а также для подводного применения.

Изобретение относится к области летательных аппаратов (ЛА), а именно к способам фиксации рулей от поворота до начала работы рулевых приводов. Способ фиксации аэродинамического руля летательного аппарата включает размещение подпружиненного штока фиксатора в подвижном и неподвижном элементах летательного аппарата.

Изобретение относится к области ракетной техники. Самоприцеливающийся боевой элемент содержит корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом внутри корпуса элемента перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки.

Изобретение относится к области вооружения и может быть использовано для снарядов малокалиберных артиллерийских систем. Способ, при котором движение снаряда в стволе орудия осуществляют воздействием давления продуктов сгорания основного метательного заряда, а заряд твердого топлива, расположенный в устройстве увеличения дальности полета снаряда, воспламеняют после вылета снаряда из ствола орудия, продукты сгорания твердого топлива истекают через отверстия, расположенные на боковой поверхности баллистического наконечника, образуя пограничный слой на поверхности снаряда.

Изобретение относится к области проектирования малогабаритных импульсных твердотопливных реактивных двигателей (РДТТ), которые находят широкое применение в качестве средств коррекции траектории полета управляемых ракет, снарядов и космических аппаратов.

Изобретение относится к области военной техники, в частности к средствам поражения личного состава, находящегося в укрытиях, защищенных объектах, объемно-детонирующим боеприпасом.

Изобретение относится к энергетике, в частности к универсальным энергоустановкам с управляемым и контролируемым вектором тяги. Энергоустановка с управляемой реактивной тягой содержит одну или более полую симметричного аэродинамического профиля лопасть, в которой выполнена по крайней мере одна полость с по крайней мере одним струеобразующим выходным сопловым отверстием, выход которого выполнен на наружной поверхности лопасти за точкой максимальной толщины ее профиля в зону, сдвинутую от максимальной толщины лопасти в сторону задней кромки лопасти, каждая лопасть выполнена спиральной, установленной на двух полых полувалах, или каждая лопасть выполнена в виде последовательно установленных вокруг полого вала на полых траверсах, на одинаковом радиальном расстоянии от полого вала и выполнена с прямыми параллельными передней и задней кромками лопастей, причем передняя и задняя кромка соседних лопастей соответственно смещены относительно друг друга по винтовой линии, полость или полости каждой лопасти разделены на одинаковые секции сплошными перегородками, перпендикулярными оси вращения каждой лопасти и выступающими за наружную поверхность лопасти, при этом каждая лопасть установлена с возможностью вращения соответственно вокруг полых полувалов или полого вала за счет реактивной силы, создаваемой струями рабочей среды, истекающей по касательной вдоль наружной поверхности лопастей в направлении задней кромки лопасти, причем выходное сопловое отверстие выполнено с одной стороны каждой лопасти или выходные сопловые отверстия выполнены на обеих противоположных сторонах лопасти для создания крутящего момента и направленной подъемной силы, в каждой лопасти со стороны входа в каждое выходное сопловое отверстие установлены клапаны с возможностью выборочного перекрытия или открытия каждого выходного соплового отверстия при помощи привода, подключенного к блоку управления, а каждая полость каждой лопасти подключена, соответственно, через полый полувал или полые полувалы или через полый вал и полые траверсы к источнику подачи рабочей среды с возможностью выборочной подачи последним под давлением рабочей среды в каждую секцию полости или полостей каждой лопасти.

Предложен способ сжигания углеводородного топлива, который может быть применен при производстве электроэнергии, организации рабочего процесса двигателей автомобилей и аэрокосмических транспортных средств и в других энергетических установках.

Изобретение относится к космическому энергомашиностроению и может быть использовано для создания силы тяги за счет использования в качестве рабочего тела воды и преобразования тепловой энергии высокотемпературного источника тепла, например источника тока высокой частоты.

Изобретение относится к способам создания электрореактивной тяги. Способ заключается в формировании потока продуктов сгорания углеводородного, химического или ядерного топлива, движущегося с заданной скоростью в магнитном поле, вектор индукции которого ортогонален вектору скорости потока продуктов сгорания, при этом поток продуктов сгорания при воздействии на него электрическим СВЧ-полем в электронно-циклотронном резонансном режиме разделяют на пучок катионов и пучок электронов, причем энергию пучка электронов преобразовывают в дополнительную мощность, направляемую в импульсном режиме на ускорение пучка катионов, создают сверхзвуковую реактивную струю, пропорциональную кинетической энергии ускоренного пучка, которым одновременно со сфокусированными отраженными ударными волнами и ускоряющим электрическим полем воздействуют на процесс горения топлива в детонационной камере сгорания с обеспечением детонационного режима горения и образованием периодически инициируемой устойчивой бегущей детонационной волны.

Изобретение относится к области электростатических ионных двигателей. Ионный источник содержит ионные и электронные эмиттеры, изготовленные из серебра высокой степени чистоты в виде конусов или пирамид, выполняющих роль резервуаров рабочего вещества, причем поверхность ионных эмиттеров покрыта тонкой пленкой кристаллического твердого электролита с мобильными ионами серебра.

Способ получения кинетической энергии газового потока - струи реактивного двигателя. Ионами - ядрами топлива, коллективно ускоренными сильноточными электронными пучками регулируемого диапазона ~0,05-200 кэВ в линейном режиме мощного ионного пучка 1-10 МэВ, обстреливают газообразную текучую мишень - холодный поток, который инжектируют в пристеночное пространство камеры сгорания с избыточным давлением ~0,1-1 МПа.

Изобретение относится к области электроракетных двигателей. Двигатель с замкнутым дрейфом электронов содержит разрядную камеру с анодом-газораспределителем.

Изобретение относится к ракетно-космической технике, а именно к ядерным ракетным двигателям (ЯРД), и может найти применение в ракетах и аэрокосмических летательных аппаратах, предназначенных для выполнения долговременных беспосадочных полетов одновременно в атмосфере, в безвоздушном (стратосфере) и околоземном космическом пространстве.

Изобретение относится к инерционным движителям, выполненным с возможностью создания реактивной тяги. Инерционный движитель содержит маховик, причем маховик содержит рабочее тело.

Устройство для подачи пылеобразного рабочего тела в электроракетный двигатель относится к области электрических ракетных двигателей (ЭРД), в которых используют пыль в качестве рабочего тела для создания тяги.

Изобретение относится к управлению вектором тяги ракетных двигателей. Жидкостный ракетный двигатель, содержащий магистраль горючего, камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала, соединенные между собой с помощью разъемного соединения, рулевые агрегаты и раму, на охлаждаемой части и неохлаждаемом насадке бурты округлой формы, имеющие эквидистантные поверхности с графитовым покрытием, между которыми установлены четыре дефлектора округлой формы из углерод-углеродного композиционного материала, внутренние и наружные поверхности которых идентичны по форме поверхностям буртов, с осью вращения, расположенной перпендикулярно к оси охлаждаемой части сопла, и с торцевой поверхностью дефлектора, являющейся продолжением профилированной поверхности сопла при их нахождении в исходном положении, согласно изобретению в районе стыка охлаждаемой сверхзвуковой части сопла с частями дефлектора на охлаждаемой части выполнено четыре коллектора, полость которых с помощью ряда отверстий, направленных на части дефлектора, соединена с газовой полостью камеры, а входные патрубки коллекторов соединены с двигательной магистралью горючего.

Изобретение относится к устройствам создания реактивной тяги, конкретно к электрическим реактивным движителям. ЭРД содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья 1, воздухозаборник 2, направляющие лопатки 3, многолопастную крыльчатку 4 с приводом от вентильного электродвигателя 5, а также реактивное сопло 6. Внутри сопла 6 условлено центральное тело 7, закрепленное внутри сопла 6 спрямляющими лопатками 8. На внешней поверхности центрального тела 7 в воздушно-реактивной струе ЭРД установлены рули 9, а внутри тела 7 - рулевые машинки 10, кинематически соединенные с рулями 9. Такое конструктивное исполнение ЭРД позволяет управлять угловым направлением его вектора тяги, компенсировать положение струйных рулей остаточной закрутки реактивной струи ЭРД, препятствуя его угловому вращению и образованию крена. В целом указанные технические преимущества позволяют повысить надежность управления ЭРД и обеспечить достижение заявленного технического результата и решение поставленной задачи. 4 ил.

Наверх