Пористая структура для медицинских имплантатов

Изобретение относится к области медицины, конкретно к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно из титановых сплавов. Описан медицинский имплантат, имеющий пористую структуру, которая содержит набор сфер, соединенных между собой по границам соприкосновения. Каждая сфера имеет полость, не сообщающуюся с атмосферой. Полости выполнены сферическими. Центры сфер и центры полостей совпадают. Пористая структура выполнена из титана или титанового сплава. Конструкция пористой структуры для медицинских имплантатов улучшает упругие характеристики имплантатов за счет возможности дополнительной оптимизации пористости. 3 ил.

 

Предлагаемое изобретение относится к области медицины, а именно к травматологии и ортопедии.

Известны конструкции имплантатов, применяемых в травматологии и ортопедии, представляющие собой стержневые системы и изготовленные из титана или титановых сплавов методом литья [1] или прокатки [2]. Они применяются, в основном, для протезирования коленных суставов. Структура титанового литья или проката представляет собой сплошной (беспористый) металл, получаемый методом отливки в печах вакуумно-дугового переплава и последующей обработкой давлением, включая прессование, ковку и прокатку, а при необходимости и горячую объемную штамповку [3].

Недостатком упомянутых структур имплантатов является отсутствие пор, которые могут выполнять несколько функций. Во-первых, наличие пор снижает массу имплантата, приближая ее к массе костного материала. Во-вторых, определенная архитектура расположения пор позволяет обеспечить улучшение совместимости с костью за счет прорастания костной ткани в поровое пространство. В-третьих, пористые структуры обеспечивают более приемлемый для имплантатов уровень физико-механических свойств: упругости, демпфируемости и т.д. [4].

Такой недостаток устранен в других технических объектах, которые представляют собой пористые структуры, создаваемые тем или иным способом.

Например, патентами US 2017252165 [5] и RU 2576610 [6] предложена группа изобретений, в которой пористая структура имплантата содержит ряд ветвей, причем каждая ветвь имеет первый конец, второй конец и непрерывное удлиненное тело между указанными первым и вторым концами, причем указанное тело имеет толщину и длину; и содержит ряд узлов, причем каждый узел содержит пересечение одного из концов первой ветви с телом второй ветви, при этом в каждом узле пересекаются не более двух ветвей. Имплантат такой конструкции имеет тем самым открытую пористость, т.е. все его поры сообщаются с внешней средой либо сами по себе, либо через соседние поры.

Пористые структуры имплантатов неоднократно усложнялись различными методами. Патентами [7, 8] предусмотрено создание хирургического имплантата, обеспечивающего улучшение совместимости с костью и/или устойчивости к износу. Имплантат состоит из поверхностной и центральной областей. При этом доля объема пор в пределах пористой поверхностной области составляет от 20 до 50%. Поры взаимно соединены и, по существу, равномерно распределены в пределах пористой поверхностной области. По меньшей мере некоторые из пор имеют размер в диапазоне от 100 до примерно 750 мкм. Пористая поверхностная область имеет толщину по меньшей мере примерно 1 мм, а предпочтительно - от примерно 2 до примерно 5 мм. Различные области в пределах пористой поверхностной области имеют различное распределение размеров пор и/или различную долю объема пор, так что в пределах пористой поверхностной области существует градиент размеров пор и/или доли объема пор. Область сердцевины имеет плотность от 0,7 до 1,0 от теоретической плотности. Область сердцевины и/или пористая поверхностная область выполнены из титана, титана коммерческой чистоты, нержавеющей стали, сплавов на основе титана, титан-алюминий-ванадиевых сплавов, титан-алюминий-ниобиевых сплавов или сплавов на основе кобальта-хрома. Область сердцевины и/или пористая поверхностная область выполнены из сплавов Ti-6Al-4V, Ti-6Al-7Nb, Stellite 211 или нержавеющей стали 316L.

В соответствии с патентом US 7674426 [9] пористая биосовместимая металлическая деталь (ортопедический имплантат) содержит металлическую матрицу с порами с извлекаемым другим материалом. Извлекаемый материал удаляют перед спеканием первого порошкового металла. В конечном варианте изготовления пористость составляет от 50% до 90%. Недостатком аналога является нерегулярный вид пор и неравномерно распределенная пористость.

По патенту US 2011125284 [10] имплантат имеет пористую часть, которая определяется множеством твердых областей, где присутствует материал, и оставшейся множественностью областей пор, где материал отсутствует, местоположения, по меньшей мере, большей части множественности твердых областей определяется одной или несколькими математическими функциями. Характер пористой части может быть систематически изменен путем изменения одной или нескольких констант в математических функциях, а часть выполняется процессом изготовления твердых свободных форм. С помощью упомянутых математических функций имплантат может быть представлен как ячеистое тело, узлы которого входят в состав стереографических многоугольников, повторяющих кристаллические решетки, например, алмаза.

Исследователи из голландских организаций (Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Department of Orthopedics and Department of Rheumatology, University Medical Center Utrecht, Department of Metallurgy and Materials Engineering, KU Leuven) опубликовали результаты изучения аддитивно изготовленных пористых биоматериалов с открытой пористостью и порами, изготовленными из шести типов ячеек и определили их механические и морфологические свойства [11]. Эти типы ячеек: усеченный куб, усеченный кубооктаэдр, ромбокубооктаэдр и ромбический додекаэдр. Изменение формы элементарной ячейки позволяет регулировать уровень физико-механических характеристик, в том числе, модуля упругости. Таким образом, разработка новых структур пористых имплантатов ведется по пути изменения конфигурации ячеистого строения. Недостатком известных технических решений является создание такой архитектуры ячеек, для которых характерна открытая пористость. Из-за этого упругость имплантата зависит только от упругости системы ячеек и от упругости материала, из которого они изготовлены.

Наиболее близким аналогом к заявляемому объекту является объект, описанный в источнике [12]. Он представляет собой пористую структуру, содержащую набор сфер, соединенных между собой по границам соприкосновения. Соединение достигается режимом спекания, при котором происходит диффузионная сварка соседних частиц (сфер). Схема такого решения показана на фиг. 1 в виде совокупности частиц (сфер) 1, с наличием промежутков между ними 2. Можно показать, что пористость, достигаемая при такой сборке частиц, не может превысить 50%, иначе исчезнут контакты между соседними частицами и они перестанут удерживаться в общей совокупности. Поэтому недостатком такого технического решения является невысокий уровень пористости, что сообщает имплантату слишком высокий уровень жесткости (повышенный модуль упругости).

Задачей изобретения является улучшение упругих свойств имплантатов.

Это достигается тем, что в отличие от известного технического решения, каждая сфера пористой структуры имеет полость, не сообщающуюся с атмосферой.

Наличие в каждой сфере полости, не сообщающейся с атмосферой, позволяет увеличить общую пористость структуры. При этом поры между сферами образуют открытую пористость, сообщающуюся с атмосферой. Полости в каждой сфере образуют закрытую пористость, не сообщающуюся с атмосферой. Каждый из видов пористости выполняет свою функцию.

Наличие закрытой пористости обеспечивает повышение общей пористости, что в свою очередь, приводит к требуемому снижению модуля упругости.

Открытая пористость в имплантатах позволяет осуществить проникновение живых тканей организма, что улучшает приживаемость. Если поры остаются не заполненными, то в этом случае возможно проявление дросселирования газов через поровое пространство, что само по себе позволяет уравновесить внешнее и внутреннее давление, кроме того, сопротивление, которое возникает при дросселировании, способно при упругом нагружении временно повышать жесткость конструкции в целом [13].

Можно рассчитать объем Vc сферы радиусом R с помощью формулы

Vc=4/3πR3,

при этом сферу можно вписать в куб со сторонами a=2R, объем которого определяется формулой

Vк=а3=8R3

Пористость такой конструкции будет определяться формулой

.

Для имплантатов желательно обеспечить пористость выше 50%, что позволяет снизить модуль упругости, но в этом случае это сделать не удается, поскольку тогда должны появиться промежутки между контактирующими сферами, и нечем будет фиксировать расстояние между ними.

В заявляемом техническом решении предлагается увеличить пористость конструкции из соединенных между собой сфер созданием внутренней пористости в самих сферах. Если представить себе, что толщина оболочки полой сферы очень мала, то пористость в этом случае приближается к 100%. Соответствующим образом будет снижен модуль упругости.

При выполнении полости в сфере радиусом Rп=0,7 R объем полой сферы окажется равным

.

Тогда пористость такой конструкции будет определяться формулой

что на 18% больше, чем по прототипу. Изменяя соотношение между Rп и R, можно добиться оптимальных значений физико-механических характеристик.

К настоящему времени выполнены исследования [14], позволяющие связать уровень пористости титановых порошковых имплантатов с модулем упругости. Соответствующая зависимость приведена на фиг. 3. Из нее видно, что востребованным интервалом модулей упругости в области создания имплантатов является диапазон 4…30 ГПа. С величиной достоверности аппроксимации 0,9981 зависимость модуля упругости Е от пористости Р описывается функцией следующего вида

Расчет по вышеприведенной формуле показывает, что для получения модуля упругости на уровне 4 ГПа, что является минимальной величиной для кости человека, следует обеспечить пористость на уровне 90…95%, что является недостижимым при использовании технического решения по прототипу. В условиях предлагаемого технического решения при использовании формулы (2) при Rп=0,9 R получим

что приближено к необходимому минимальному значению модуля упругости.

В предлагаемой пористой структуре для медицинских имплантатов полости могут иметь различную форму, (например, куба), но предпочтительно полости выполнены сферическими, что позволяет добиться лучшей изотропности физико-механических характеристик.

В предлагаемой пористой структуре для медицинских имплантатов центры сфер и центры полостей могут не совпадать, что создает эксцентриситет, в результате толщина стенки полых сфер оказывается различной. Предпочтительно центры сфер и центры полостей должны совпадать, что позволяет добиться лучшей однородности физико-механических характеристик.

В настоящее время металлические имплантаты стараются изготавливать из материалов, биологически совместимых с организмом человека. Поэтому предлагаемая пористая структура для медицинских имплантатов предпочтительно выполнена из титана или титанового сплава.

На фиг. 1 представлено сечение пористой структуры по прототипу; на фиг. 2 - сечение пористой структуры по предлагаемому техническому решению, на фиг. 3 представлена диаграмма зависимости модуля упругости пористых тел от величины пористости..

Предлагаемая пористая структура для медицинских имплантатов содержит набор сфер 1, имеющих площадки контакта между собой. При этом каждая сфера 1 имеет полость 3, не сообщающуюся с атмосферой. Между сферами имеются промежутки 2, сообщающиеся с атмосферой, поэтому они образуют открытую пористость. Полости 3 не сообщаются с атмосферой, поэтому они образуют закрытую пористость.

Предлагаемая пористая структура может быть получена следующим образом. Создают компьютерную объемную модель имплантата, содержащего полые сферы. С помощью установки лазерного спекания с использованием технологий 3D печати из металлического порошка, например, титанового, изготавливают структуру, содержащую открытую и закрытую пористость. При этом нужный уровень пористости подбирается за счет изменения размера полостей в сферах.

Техническим результатом предлагаемой конструкции пористой структуры для медицинских имплантатов является улучшение упругих характеристик имплантатов за счет возможности дополнительной оптимизации пористости.

Медицинский имплантат для ортопедии, характеризующийся тем, что имеет пористую структуру, выполненный из титана или титанового сплава, содержащий набор сфер, соединенных между собой по границам соприкосновения с образованием открытой пористости, где каждая сфера имеет полость, не сообщающуюся с атмосферой, а указанные полости образуют закрытую пористость имплантата, при этом центры полостей совпадают с центром сфер, а радиус полости составляет (0,7…0,9)R, где R - радиус сферы.



 

Похожие патенты:

Изобретение относится к области медицины, в частности, к регенеративной медицине и стоматологии, и может быть использовано для направленной костной регенерации при костно-пластических операциях.

Изобретение относится к способу изготовления коллагенового остеопластического материала из костной ткани, заключающемуся в том, что после механической очистки и фрагментации материал отмывают нагретым до 45-50°С физраствором в течение 30 мин, выполняют обработку раствором 3% пероксида водорода в воде в виде 3 циклов по 10 минут с отмывкой физраствором при 45-50°С, а вместо обработки папаином выполняют обработку раствором 0.1-0.5% липазы в забуференном физиологическом растворе при рН 8.0 в течение 2 суток, затем промывают физиологическим раствором, обрабатывают смесью хлороформа с водой (1:1) в течение 1-3 суток с периодической заменой смеси по мере ее помутнения, отмывают хлороформ раствором 20-30% этанола в воде в течение 6-12 часов, а затем физиологическим раствором при пятикратной смене растворов, выполняют деминерализацию материала раствором 0.6 М соляной кислоты в воде в течение 0,25-1 часа при температуре 4-6°С в условиях перемешивания и смене раствора на свежий каждые 15 мин, затем обрабатывают раствором 5% тиосульфата натрия в воде в течение 3 ч, промывают 10-кратной сменой дистиллированной воды, и нормализуют в забуференном физиологическом растворе рН7.4 в течение 7 суток при комнатной температуре и при смене раствора на свежий 3 раза в сутки, причем соотношение объемов костной ткани и смесей или растворов для обработки или отмывки составляет 1:4-1:6, обработку и отмывку выполняют в условиях перемешивания при 40-50°С, если не указана другая температура, а деминерализацию выполняют при периодическом вакуумировании до 10-30 мм рт.ст.
Группа изобретений относится к области медицинских изделий. Первое изобретение представляет собой способ изготовления имплантата с по меньшей мере одной функциональной поверхностью, отличающийся тем, что способ включает следующие стадии a) подготовку керамической порошковой смеси; b) смешивание этой керамической порошковой смеси с пластической связующей системой с образованием первого сырьевого материала; с1) разделение первого сырьевого материала и смешивание его части с наполнителями для образования второго сырьевого материала или с2) получение второго сырьевого материала в соответствии со стадиями а) и b); d) проведение процесса формования, при котором основную часть и поверхность, имеющую сродство к костям, формуют из первого и второго сырьевого материала; e) удаление связующего вещества из сырца; f) спекание сформованной и подвергнутой удалению связующего вещества заготовки имплантата с получением готового имплантата с поверхностью, имеющей сродство к костям.

Группа изобретений относится к медицине, конкретно к способу получения костного регенеративного материала, который включает в себя: приведение костного материала, содержащего гидроксиапатит и органические вещества, в контакт с экстракционной жидкостью, что дает первую жидкую фазу, содержащую упомянутые органические вещества и, возможно, примеси, экстрагированные из упомянутого костного материала, и вторую твердую гидроксиапатитную фазу, содержащую упомянутый гидроксиапатит; и разделение упомянутой жидкой фазы и упомянутой твердой гидроксиапатитной фазы.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии, отличающийся тем, что после изготовления ячеистой структуры ее подвергают пластической деформации, при этом ячеистую структуру изготовляют в виде цилиндра или призмы, ячейки выполняют в виде параллельных каналов, ортогональных основанию цилиндра или призмы, а пластическую деформацию осуществляют путем осадки цилиндра или призмы в направлении, ортогональном основанию цилиндра или призмы.

Изобретение относится к области медицины и раскрывает средство для восстановления кожи пациентов, которые пострадали от ожогов. Средство для восстановления кожи включает лоскут полотна, изготовленного из полигликолевой кислоты, который имеет множество отверстий, по меньшей мере одна из поверхностей вышеупомянутого лоскута содержит по меньшей мере один покровный слой, изготовленный из коллагена.

Изобретение относится к области медицины. Описан способ получения микроволокнистого материала путем последовательного смешивания раствора человеческого сывороточного альбумина (ЧСА) в гексафторизопропаноле (ГФИП) и лекарственного средства (ЛС) в диметилсульфоксиде (ДМСО), после чего полученный раствор смешивают с раствором поликапролактона (ПКЛ) в ГФИП.

Изобретение относится к медицине. Предлагается имплантируемый фиксатор костного лоскута относительно свода черепа содержит подвижный и неподвижный ограничители и детали средств их стягивания, выполненные с возможностью фиксации ограничителей на заданном расстоянии друг от друга; согласно изобретению на всех поверхностях ограничителей и деталей средств стягивания выполнен слой поликристаллического кремния толщиной от 70 нм до 3000 нм, покрытый сетью глухих каналов шириной от 40 нм до 400 нм и глубиной от 40 нм до 2000 нм.

Изобретение касается частиц биоактивного стекла для регенерации костей, имеющих форму сфер или сжатых сфер и имеющих бимодальное распределение размера частиц, включающее частицы между 90 мкм и 180 мкм и частицы между 355 мкм и 500 мкм, где биоактивное стекло представляет собой 45S5 стекло.

Изобретение относится к медицине. Описаны имплантируемая структура, способ получения структуры и способ применения структуры, где структура включает комбинацию нерассасывающихся и рассасывающихся компонентов, а имплантируемая структура имеет разупорядоченную однородную матрицу материалов.

Изобретение относится к медицине. Способ изготовления внутрикостного имплантата содержит предварительную механическую обработку и очистку титановой основы.

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов.

Изобретение относится к медицинской технике и раскрывает способ нанесения биоактивного покрытия на титановые имплантаты. Способ характеризуется тем, что готовят раствор для покрытия, представляющий собой электролит, содержащий ортофосфорную кислоту, биоактивный гидроксиапатит, нанодисперсный германий и дистиллированную воду с последующим нанесением покрытия на титановый имплантат посредством микродугового нанесения при длительности импульса - 150-200 мкс, частоте следования импульсов 1-45 Гц и напряжении 310-400 В в течение 12-20 мин при постоянном перемешивании электролита.

Изобретение относится к медицине, а именно к способу напыления биосовместимого покрытия. Способ напыления биосовместимого покрытия, модифицированного компонентом с низкой температурой разложения, включающий послойное нанесение электроплазменным напылением на титановую основу покрытия, состоящего из слоя титана и слоя гидроксиапатита (ГА), модифицированного бемитом, причём электроплазменное напыление слоя из гидроксиапатита, модифицированного бемитом, производят с дистанции напыления 50-60 мм в течение 6-8 с и токе дуги 320 А.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для лечения внутрикостных дефектов. Способ заполнения внутрикостного дефекта имплантатом включает инвазивную установку во внутрикостную полость имплантата.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия на основе кремнийзамещенного гидроксиапатита, включающий воздушно-абразивную обработку с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 4-6 мин, затем для формирования покрытия проводят электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм в течение 5-10 с при токе дуги 300 А с дистанции напыления 150-200 мм и расходе плазмообразующего газа 20 л/мин, после чего проводят электроплазменное напыление кремнийзамещенного гидроксиапатита с дисперсностью до 90 мкм в течение 12-15 с при токе дуги 350 А с дистанции напыления 50-100 мм и расходе плазмообразующего газа 20 л/мин.

Изобретение относится к области медицины, а именно к медицинской технике, травматологии и стоматологии, и предназначено для создания микро- и нанорельефной биоинертной поверхности на имплантатах из титана и титановых сплавов.

Изобретение относится к области изготовления микро-наноразмерных пористых структур на поверхности изделий из титана или его сплавов. Способ изготовления микро-наноструктурированного пористого слоя на поверхности внутрикостного имплантата заключается в предварительной подготовке поверхности основы имплантата, изготовленного из титана, включающей механическую полировку титановой основы и очистку поверхности.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для формирования серебросодержащего биосовместимого покрытия на титановых имплантатах.

Изобретение относится к области медицинской техники, а именно к биосовместимому материалу, предназначенному для повышения жизнеспособности клеток костного мозга, на основе сплава никелида титана, отличающегося тем, что в состав сплава введено дополнительно серебро при полном ингредиентном содержании, в ат.%: серебро – 0.1-0.2; никель – 49.3-49.4; титан – остальное.

Изобретение относится к области медицины и может быть использовано для изготовления полимерных скаффолдов, предназначенных для регенерации дефектов костных и хрящевых тканей.
Наверх