Способ изготовления многоэлементных матриц фотоприемников



Способ изготовления многоэлементных матриц фотоприемников
Способ изготовления многоэлементных матриц фотоприемников
Способ изготовления многоэлементных матриц фотоприемников
H01L31/1848 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2689973:

Акционерное общество "НПО "Орион" (RU)

Изобретение относится к технологии изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями может использоваться для создания матричных фотоприемников (МФП) различного назначения. В предлагаемом способе изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями, отличающимися по химическому составу, и формирующими р-n переход по всей площади пластины на поглощающем слое из однородного полупроводникового материала, обеспечивающего фотоэлектрическое преобразование излучения в заданном диапазоне длин волн, окончание процесса жидкостного травления на достаточную глубину промежутков, создающих границы отдельных элементов (фотодиодов) с однородными параметрами фотодиодов на пластине, определяется по установленной величине фототока отдельных тестовых фотодиодов, расположенных в центре и на краях пластины и освещаемых установленным потоком излучения, соответствующего спектральному диапазону чувствительности поглощающего слоя из однородного полупроводникового материала. Задачей изобретения является: разработка способа прецизионного жидкостного травления слоев гетероэпитаксиальной структуры разного химического состава, например, In0,53Ga0,47As-Al0,48In0,52As, на неопределенную глубину, обеспечивающего разделение фоточувствительной структуры большой площади на отдельные с однородными параметрами фотодиоды, составляющие массив элементов выбранного формата матриц, умещающихся на пластине. 1 табл., 3 ил.

 

Изобретение относится к технологии изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями, отличающимися по химическому составу и формирующими р-n переход по всей площади пластины, на поглощающем слое из однородного полупроводникового материала, обеспечивающего фотоэлектрическое преобразование излучения в заданном диапазоне длин волн, и может использоваться для создания матричных фотоприемников (МФП) различного назначения. Примером такой исходной пластины с р-n переходом по всей площади является многослойная гетероэпитаксиальная структура, выращенная на подложке InP с параметрами слоев, представленными в таблице.

На фиг. 1 представлено схематическое изображение фрагмента матрицы, изготовленной по меза-планарной технологии. На сильно легированном слое p++-In0,53Ga0,47As фотолитографией и напылением никель-золото получают омические контакты, толщина металла составляет 0,18-0,22 мкм. Особенно ответственным процессом в меза-планарной технологии является процесс жидкостного травления меза-элементов фотодиодной матрицы по фоторезистивной маске. Сложность операции состоит в необходимости прецизионного жидкостного травления слоев гетероэпитаксиальной структуры разного химического состава (In0,53Ga0,47As-Al0,48In0,52As) - на глубину около 200 нм на пластине диаметром 50,8 мм, обеспечивающей разделение фоточувствительной структуры большой площади на отдельные фотодиоды, составляющие массив элементов выбранного формата матриц, умещающихся на пластине. На двухдюймовой пластине можно разместить 12 матриц форматов 640×512 с шагом 15 мкм или 320×256 с шагом 30 мкм.

С другой стороны, следует учитывать (при выполнении операции травления мезы) возможное отклонение при выращивании гетероэпитаксиальной структуры по толщине, указанной в сертификате на купленную пластину.

В такой ситуации предъявляются повышенные требования контроля глубины травления гетероэпитаксиальных p-i-n-структур, из-за возможного недотравливания или перетравливания функциональных слоев. Недотравливание верхнего контактного чревато повышенной взаимосвязью элементов матрицы, а стравливание барьерного и пассивирующего слоя Al0,48In0,52As создает условия нестабильности состояния поверхности между элементами, что, в свою очередь, приводит к большой дисперсии значений темновых токов элементов матриц.

Известен способ изготовления фотоприемников на таких структурах, описанный в статье [Mesa-isolated InGaAs photodetectors with low dark current J. F. Klem, J. K. Kim, M. J. Cich, G. A. Keeler, S. D. Hawkins, and T. R. Fortune. APPLIED PHYSICS LETTERS 95, 031112 (2009)], в котором авторы предлагают обеспечивать формирование отдельных фотодиодов жидкостным травлением в растворе на основе фосфорной кислоты: Н3РО4: Н2О2: Н2О (1:4:45) в течение 28 секунд, обеспечивающий травление меза-элементов на глубину до половины барьерного и пассивирующего слоя Al0,48In0,52As.

Однако проведенные нами исследования показали невоспроизводимость результатов получения матриц с однородными параметрами фотодиодов на пластине, что является следствием травления элементов на недостаточную глубину. На фиг. 2 представлены вольтамперные характеристики элементов матриц, расположенных на краях и в центре пластины диаметром 50,8 мм, измеренные после первого травления мезы длительностью 28 сек. 1-4,5х в темноте и 5° при освещении потоком излучения .

Как видно из вольтамперных характеристик, представленных на фиг. 2, темновой ток элементов матриц ФЧЭ, измеренный после первого промежуточного травления, уменьшается в соответствии с увеличением глубины травления. Наименьший ток 2-10 нА при напряжении смещения -1В наблюдается у элементов матриц на краю пластины, при глубине травления 140 нм, что более чем на порядок превышает среднее значение темнового тока фотодиодов матриц, сформированных травлением на необходимую (более толщины слоев р++-р In0,53Ga0,47As) глубину. Для пластины V-2463 эта величина по данным сертификата составляет 160 нм. Время, необходимое для полного стравливания этого слоя по всей пластине, составит (160-110) нм / 5 нм /сек=10 сек.

На фиг. 3 показано изменение глубины мезы при увеличении длительности травления двух элементов матрицы ФЧЭ. Замедление скорости травления n-B-р ГЭС на временном промежутке 30-50 сек, как установлено из проведенных нами исследований (см. фиг. 3), позволяет выполнить дополнительное травление на необходимую глубину, сохраняя при этом достаточную толщину пассивирующего слоя AlGaAs.

Задачей изобретения является: разработка способа прецизионного жидкостного травления слоев гетероэпитаксиальной структуры разного химического состава (например, In0,53Ga0,47As-Al0,48In0,52As) - на неопределенную глубину, обеспечивающего разделение фоточувствительной структуры большой площади на отдельные с однородными параметрами фотодиоды, составляющие массив элементов выбранного формата матриц, умещающихся на пластине.

Задача решается тем, что в предлагаемом способе изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями, отличающимися по химическому составу и формирующими р-n переход по всей площади пластины на поглощающем слое из однородного полупроводникового материала, обеспечивающего фотоэлектрическое преобразование излучения в заданном диапазоне длин волн, окончание процесса жидкостного травления на достаточную глубину промежутков, создающих границы отдельных элементов (фотодиодов) с однородными параметрами фотодиодов на пластине, определяется по установленной величине фототока отдельных тестовых фотодиодов, расположенных в центре и на краях пластины и освещаемых установленным потоком излучения, соответствующего спектральному диапазону чувствительности поглощающего слоя из однородного полупроводникового материала.

Способ изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями, отличающимися по химическому составу и формирующими р-n переход по всей площади пластины на поглощающем слое из однородного полупроводникового материала, обеспечивающего фотоэлектрическое преобразование излучения в заданном диапазоне длин волн, включающий технологические операции подготовки поверхности, фотолитографии, жидкостного травления, напыления металлических и диэлектрических тонкопленочных покрытий и формирования индиевых микроконтактов, резки на отдельные матрицы, отличающийся тем, что окончание процесса жидкостного травления на достаточную глубину промежутков, создающих границы отдельных элементов (фотодиодов), определяется по установленной величине фототока отдельного тестового фотодиода, освещаемого установленным потоком излучения, соответствующего спектральному диапазону чувствительности поглощающего слоя из однородного полупроводникового материала.



 

Похожие патенты:

Изобретение относится к технологии изготовления кремниевых фотодиодов (ФД), чувствительных к излучению с длинами волн 0,3-1,06 мкм, которые могут быть использованы в электронно-оптической аппаратуре.

Изобретение относится к области приема оптического излучения и касается фотоприемного устройства с затвором. Фотоприемное устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается фотоприемного устройства. Фотоприемное устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается приемника оптических импульсов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается приемника оптических сигналов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к солнечной энергетике. Изобретение представляет собой гелиоэнергетическую систему, включающую не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами либо солнечными батареями на плоских держателях, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, причем солнечные отражатели либо солнечные батареи на плоских держателях выполнены гибкими в виде продольно расположенных относительно держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Настоящее изобретение относится к клею для ламинированных листов, подложке для солнечной батареи и к модулю солнечной батареи. Указанный клей содержит уретановую смолу, получаемую смешиванием акрилового полиола с алифатическим изоцианатным соединением, а также имеет химическую структуру, полученную из диенового полимера.

Изобретение относится к области концентраторных солнечных фотоэлектрических преобразователей, применяемых на наземных гелиоэнергетических установках. Согласно изобретению в известном фотоэлектрическом модуле, содержащем корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней его стороне, фотоэлектрические преобразователи с различной шириной запрещенной зоны, оптический фильтр, расположенный в зоне действия линзы Френеля, при этом фотоэлектрические преобразователи с различной шириной запрещенной зоны расположены на уровне оптического фильтра, выполненного в виде призмы, расположенной между линзой Френеля и светоотражающими фокусирующими зеркалами, установленными на тыльной стороне фотоэлектрического модуля, направленными на соответствующие фотоэлектрические преобразователи с определенной шириной запрещенной зоны, при этом рабочие поверхности призмы обращены к линзе Френеля и фокусирующим зеркалам с возможностью поворота призмы относительно оптической оси линзы Френеля.

Изобретение относится к технологии изготовления кремниевых фотодиодов (ФД), чувствительных к излучению с длинами волн 0,3-1,06 мкм, которые могут быть использованы в электронно-оптической аппаратуре.

Изобретение относится к технологии изготовления кремниевых фотодиодов (ФД), чувствительных к излучению с длинами волн 0,3-1,06 мкм, которые могут быть использованы в электронно-оптической аппаратуре.

Изобретение относится к электронной технике, а именно, касается технологии изготовления гибридных микросхем, и может быть использовано в производстве гибридных фотоэлектрических сборок путем микросварки.

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру A3B5 основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку полученной структуры, формирование фронтального омического контакта через вторую фоторезистивную маску и тыльного омического контакта путем электрохимического осаждения золота в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 сначала при плотности тока 0,002-0,005 мА/мм2 1-2 минуты, а затем при плотности тока 0,02-0,05 мА/мм2 до заданной толщины.

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры А3В5 с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над фотоприемными участками полупроводниковой гетероструктуры химическим травлением через первую фоторезистивную маску, обработку открытых поверхностей пассивирующего слоя ионно-лучевым травлением, осаждение антиотражающего покрытия, удаление первой фоторезистивной маски и лежащих на ней участков диэлектрического антиотражающего покрытия, формирование тыльного омического контакта и формирование фронтального омического контакта по меньшей мере через одну вторую фоторезистивную маску, содержащую подслой из антиотражающего покрытия.

Группа изобретений относится к технологии устройств твердотельной электроники и может быть использована при разработке фотоприемников видимого и ближнего ИК-диапазона.

Группа изобретений относится к технологии устройств твердотельной электроники и может быть использована при разработке фотоприемников видимого и ближнего ИК-диапазона.

Изобретение может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления фотопреобразователя со встроенным диодом на утоняемой подложке включает создание на германиевой подложке с выращенными эпитаксиальными слоями трехкаскадной структуры фоторезистивной маски с окнами под лицевые контакты фотопреобразователя со встроенным диодом, вытравливание диодной площадки, напыление слоев металлизации на основе серебра, удаление фоторезиста, создание фоторезистивной маски с окнами под меза-изоляцию фотопреобразователя и встроенного диода, вытравливание мезы с одновременным удалением эпитаксиальных наростов на тыльной стороне германиевой подложки, удаление фоторезиста, напыление слоев тыльной металлизации на основе серебра, отжиг контактов, вскрытие оптического окна травлением, напыление просветляющего покрытия, дисковую резку эпитаксиальной структуры, выпрямление фотопреобразователя со встроенным диодом посредством охлаждения в парах азота, после напыления слоев лицевой металлизации и удаления фоторезиста создают фоторезистивную маску под меза-изоляцию с дополнительным рисунком в виде островков, расположенных напротив контактных площадок фотопреобразователя со встроенным диодом, кроме того, при вытравливании мезы удаляют слой германиевой подложки в растворе гидроокиси тетраметиламмония, перекиси водорода и воды, далее, после отжига контактов, выпрямляют посредством охлаждения в парах азота металлизированную подложку, после этого выполняют дисковую резку эпитаксиальной структуры, затем, после вскрытия оптического окна, напыляют просветляющее покрытие, а после выпрямления фотопреобразователя со встроенным диодом выполняют химико-динамическое травление в растворе гидроокиси тетраметиламмония, перекиси водорода и воды при количественном соотношении компонентов 1÷1,5 масс.
Изобретение относится к области полупроводникового материаловедения и может быть использовано в изделиях оптоэлектроники, работающих в инфракрасной области спектра, лазерной и сенсорной технике.
Изобретение относится к области полупроводникового материаловедения и может быть использовано в изделиях оптоэлектроники, работающих в инфракрасной области спектра, лазерной и сенсорной технике.

Изобретение относится к толстопленочной микроэлектронике. Алюминиевая паста для изготовления тыльного контакта кремниевых солнечных элементов c тыльной диэлектрической пассивацией включает порошок алюминия, органическое связующее, порошок стекла, причем паста дополнительно содержит одно или смесь металлоорганических соединений щелочноземельных металлов, при следующем соотношении компонентов, масс. %: порошок алюминия - 68-83; порошок стекла - не более 1,0; металлоорганические соединения щелочноземельных металлов - 0,1-2,0; органическое связующее - 15-35. Изобретение обеспечивает снижение повреждения диэлектрической пассивации пастой в процессе вжигания контактной системы солнечного элемента при одновременном повышении качества тыльного алюминиевого контакта и качества пассивации в локальных контактах за счет получения однородного локального BSF слоя, существенное снижение дефектности и повышение КПД солнечного элемента при массе отпечатка алюминиевой пасты менее 0,7 грамма на один солнечный элемент. 4 з.п. ф-лы, 4 ил., 2 табл., 12 пр.

Изобретение относится к технологии изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями может использоваться для создания матричных фотоприемников различного назначения. В предлагаемом способе изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями, отличающимися по химическому составу, и формирующими р-n переход по всей площади пластины на поглощающем слое из однородного полупроводникового материала, обеспечивающего фотоэлектрическое преобразование излучения в заданном диапазоне длин волн, окончание процесса жидкостного травления на достаточную глубину промежутков, создающих границы отдельных элементов с однородными параметрами фотодиодов на пластине, определяется по установленной величине фототока отдельных тестовых фотодиодов, расположенных в центре и на краях пластины и освещаемых установленным потоком излучения, соответствующего спектральному диапазону чувствительности поглощающего слоя из однородного полупроводникового материала. Задачей изобретения является: разработка способа прецизионного жидкостного травления слоев гетероэпитаксиальной структуры разного химического состава, например, In0,53Ga0,47As-Al0,48In0,52As, на неопределенную глубину, обеспечивающего разделение фоточувствительной структуры большой площади на отдельные с однородными параметрами фотодиоды, составляющие массив элементов выбранного формата матриц, умещающихся на пластине. 1 табл., 3 ил.

Наверх