Способ определения размера магнитных наночастиц

Использование: для определения размера магнитных наночастиц. Сущность изобретения заключается в том, что приготовливают коллоидные растворы наночастиц с разной концентрацией С стабилизирующего вещества, помещают их в магнитное поле, измеряют намагниченности методом ядерного магнитного резонанса в разные моменты времени после приготовления или взбалтывания раствора и определяют две концентрации (С1 и С2), при которых скорость уменьшения намагниченности имеет минимумы. Размер магнитных наночастиц D определяется по формуле D=d(3-X)/(X-1), где d - размер молекулы стабилизатора, X=[(C2/C1)-l]0,5. Технический результат: обеспечение возможности определения полного размера магнитных наночастиц в коллоидном растворе. 1 ил.

 

Изобретение предназначено для определения размера магнитных наночастиц в растворе, например тех, которые применяются в медицине для перемещения внешним магнитным полем по кровеносным сосудам лекарств к больным органам и тканям организма. Определение размера таких наночастиц имеет значение, так как большие частицы создают угрозу образования тромбов, а маленькие частицы обладают малыми магнитными моментами, поэтому их сложно перемещать по сосуду магнитным полем, так как действующая на них со стороны поля сила мала. Определение размера наночастиц в растворе при помощи классических методов: электронного микроскопа и рентгено-структурного анализа, невозможно, так как эти методы применимы только для порошков, а размеры наночастиц в порошке и коллоидном растворе отличаются из-за образования конгломератов. Это показано, например, в работе «Сравнение размеров и магнитных моментов наночастиц магнетита в порошке и в коллоидном растворе, изготовленных метолом химической конденсации», Научное приборостроение 16, том 24, №1, авторы А.И. Жерновой, С.В. Дьяченко.

Известен способ определения размера магнитных наночастиц в коллоидном растворе методом ядерного магнитного резонанса путем измерения намагниченности их коллоидного раствора при разных индукциях внешнего магнитного поля, построения кривой намагничивания, нахождения по кривой намагничивания магнитного момента наночастицы, определения по значению магнитного момента наночастицы и намагниченности кристаллического магериала, из которого она состоит, ее объема и нахождения по объему и удельному весу материала наночастицы ее размера. Недостаток метода в том, что им определяется размер только кристаллического ядра наночастицы, создающего ее магнитный момент, в то время как размер наночастицы определяется и кристаллическим ядром и покрывающей его аморфной немагнитной оболочкой. Способ описан в журнале Научное приборостроение, 2009, том 19, №3, с. 57-61. Его можно принять за прототип.

Известен способ определения размеров магнитных наночастиц в каллоидном растворе методом ядерного магнитного резонанса путем измерения намагниченности их коллоидного раствора по различию частот ядерного магнитного резонанса при цилиндрической и сферической формах образца и определения теоретического значения намагниченности по известной намагниченности материала кристаллического магнитного ядра наночастиц. На поверхности магнитных наночастиц имеется аморфный слой, не обладающий магнитными свойствами, поэтому теоретически рассчитанная намагниченность раствора без учета этого слоя, меньше намагниченности, измеренной экспериментально. Толщина немагнитного слоя не зависит от размера магнитного кристаллического ядра наночастицы, поэтому чем меньше размер наночастицы, тем больше различие теоретической и экспериментальной намагниченности раствора. Это различие используется для определения размера наночастиц. Способ описан в журнале «Журнал прикладной химии»2005, том 78, вып. 4, с.556-558. Недостаток способа в том, что с его помощью определяется размер кристаллического ядра наночастицы. Его можно принять за аналог.

В предлагаемом способе для измерения полного размера магнитных наночастиц D приготавливают их коллоидный раствор, стабилизирумый веществом, имеющим молекулы с известным диаметром d, измеряют зависимость намагниченности М коллоидного раствора, уменьшающейся в результате оседания (седиментации) наночастиц, от времени t при разных концентрациях стабилизирующего вещества С и находят концентрации С1 и С2, при которых скорость уменьшения намагниченности М имеет минимумы. Известно, что скорость седиментации наночастиц в коллоидном растворе при увеличении концентрации стабилизатора С имеет два минимума. Первый минимум при С=С1, когда молекулы стабилизатора покрывают поверхность каждой наночастицы одним слоем и второй минимум при С=С2, когда молекулы

стабилизатора покрывают поверхность каждой наночастицы двумя слоями. Отношение этих концентраций(С2/С1) определяется площадями второго

S2=π(D+3d)2/4 и первого S1=π(D+d)2/4 слоев молекул стабилизатора на поверхности наночастиц: (C2/C1)=[(S2+S1)/S1]=1+(S2/S1)=1+[(D+3d)/(D+d)]2. Из этого равенства получаем [(C2/C1)-1]0,5=(D+3d)/D+d). Обозначив [(C2/C1)-1]0,5=Х, получаем X=(D+3d)/(D+d), X-1=2d/D+d, (X-l)/2=d/(D+d), ((D+d)/d)=2/(X-l), откуда (D/d)=(3-X)/(X-l). В результате получаем выражение для определения диаметра наночастицы: D=d(3-X)/(X-1).

Доказательство осуществимости способа.

Оседание (седиментация) магнитных наночастиц уменьшает намагниченность М их коллоидного раствора, поэтому скорость оседания частиц V можно экспериментально определять по экспериментальной зависимости намагниченности от времени t, как производную V=dM/dt, или как

где - время с момента перемешивания раствора, за которое намагниченность уменьшается в заданное число раз. Скорость оседания наночастиц в коллоидном растворе зависит от концентрации С стабилизирующего вещества, молекулы которого окружают наночастицы и препятствуют их объединению, приводящему к образованию оседающих конгломератов. В книге «Магнитные жидкости», 1989, Москва, изд. Химия, авторы Б.М. Берковский, В.Ф. Медведев, М.С. Краков, на странице 29, сказано, что при увеличении концентрации стабилизатора коллоидный раствор ферромагнитных наночастиц стабилизируется (скорость оседания наночастиц становится равной нулю) при такой концентрации стабилизатора С, когда на поверхности каждой наночастицы образуется двойной слой молекул стабилизатора. Как показали наши исследования, скорость оседания наночастиц обращается в ноль при двух концентрациях С: при С=С1, когда молекулы стабилизатора образуют на поверхности каждой наночастицы один слой, и при С=С2, когда молекулы стабилизатора образуют на поверхности каждой наночастицы двойной слой. Этот результат опубликован в работе «Исследование седиментации ферромагнитных наночастиц в магнитной жидкости», Журнал технической физики, 2017, том 87, вып. 10, с. 1596-1598, авторы Дьяченко С.В., Кондрашкова И.С, Жерновой А.И.

Для проверки предлагаемого способа был приготовлен коллоидный раствор наночастиц магнетита в воде, стабилизированный солью олеиновой кислоты, имеющей молекулы диаметром d=2 нм, и получена зависимость скорости уменьшения намагниченности раствора от относительной концентрации стабилизатора С, равной отношению масс стабилизатора и наночастиц в образце раствора. Полученная зависимость приведена на рисунке 1., где по оси абсцисс отложена концентрация стабилизатора С, а по оси ординат величина за которое намагниченность раствора уменьшается в два раза. Из рисунка видно, что величина имеет минимумы при концентрациях стабилизатора C1=0,22 и С2=0,7. Отношение этих концентраций (C2/C1)=(0,7/0,22)=3,2, откуда Х=[(С2/С1)-1]0,5=1,48. Подставив это значение X и d=2 нм в выражение D=d(3-X)]/(X-1), получаем значение D=6,33 нм, которое не противоречит значениям, полученным другими способами. Более подробно выражение, связывающее диаметр наночастицы D и диаметр молекулы стабилизатора d получено из следующих соображений. 1) диаметр Д1 сферы, на которой находятся центры молекул стабилизатора вокруг каждой наночастицы при С=С1, когда молекулы стабилизатора образуют один слой, Д1=D+d, 2) при С=С2, когда молекулы стабилизатора образуют вокруг каждой наночастицы два слоя, диаметр сферы, на которой находятся центры молекул стабилизатора, образующих второй слой, Д2=D+3d. 3)Обозначим площади слоев S1 и S2, отношение этих площадей (S2/S1)=(Д21)2. Площади слоев пропорциональны количествам в них молекул стабилизатора, поэтому отношение концентраций стабилизатора при двух и одном слоях

(C2/C1)=[(S1+S2)/S1]=(Д122212+(Д21)2, откуда (Д21)=[(C2/C1]0,5. 4)Обозначив [(C2/C1)-1]0,5=X и подставив Д1=D+d и, Д2=D+3d, получаем D+3d=(D+d)X, откуда D=d(3-X)/(X-1).

Способ определения размера D магнитных наночастиц путем измерения намагниченности их коллоидного раствора методом ядерного магнитного резонанса, отличающийся тем, что измеряют скорости уменьшения намагниченности во времени при нескольких концентрациях стабилизатора, находят концентрации стабилизатора C1 и С2, при которых скорости уменьшения намагниченности минимальны, и определяют размер наночастиц по формуле: D=d(3-X)/(X-1), где d - размер молекулы стабилизатора, X=[(C2/C1)-1]0,5.



 

Похожие патенты:

Использование: для определения кислотного числа подсолнечного лецитина. Сущность изобретения заключается в том, что осуществляют отбор пробы подсолнечного лецитина, последовательное смешивание пробы с растворителем и водным раствором щелочи с получением смеси и вычисление значения кислотного числа по формуле, при этом в качестве растворителя используют четыреххлористый углерод при соотношении по массе подсолнечный лецитин:четыреххлористый углерод, равном (1:5)÷(1:5,5), в качестве водного раствора щелочи берут водный раствор гидроксида натрия концентрацией 0,9-1,1 моль/дм3 при соотношении по массе подсолнечный лецитин:водный раствор гидроксида натрия, равном (1:0,7)÷(1:0,8), а полученную смесь помещают в датчик импульсного ЯМР-анализатора и измеряют амплитуду сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам), при этом для вычисления значения кислотного числа используют формулу в виде уравнения: К.ч.=3,0554+0,9608⋅Ам.

Изобретение относится к области измерительной техники, а именно к средствам градуировки импульсных ЯМР-спектрометров, и может быть использовано для определения содержания линоленовой кислоты в масле семян льна.

Изобретение относится к области измерительной техники, а именно к средствам градуировки импульсных ЯМР-спектрометров и может быть использовано для определения содержания олеиновой кислоты в масле семян рапса.

Изобретение относится к области измерительной техники, а именно к средствам градуировки импульсных ЯМР-спектрометров и может быть использовано для определения содержания олеиновой кислоты в масле семян рапса.

Изобретение относится к области измерительной техники, а именно к средствам градуировки импульсных ЯМР-спектрометров, и может быть использовано для определения содержания олеиновой кислоты в масле семян подсолнечника.

Изобретение относится к операциям бурения скважин и, более конкретно, к инструменту ядерного магнитного резонанса. Техническим результатом является повышение эффективности измерений.

Использование: для определения диаметра пор пористого объекта. Сущность изобретения заключается в том, что вводят жидкий галлий или один из сплавов, находящийся в жидком состоянии и выбранный из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), в указанный пористый объект; измеряют спектр ядерного магнитного резонанса на ядрах галлия в жидком галлии или в одном из сплавов, находящихся в жидком состоянии и выбранных из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), в указанном объекте с определением сдвига Найта (K) по полученному ЯМР-спектру; измеряют спектр ядерного магнитного резонанса на ядрах галлия в жидком галлии или в одном из сплавов, находящихся в жидком состоянии и выбранных из группы, включающей галлий-индий (Ga-In), галлий-олово (Ga-Sn) и галлий-индий-олово (Ga-In-Sn), с определением сдвига Найта (Kb) по полученному ЯМР-спектру; определяют диаметр пор указанного пористого объекта по заданной математической формуле.

Использование: для спектроскопии магнитного резонанса. Сущность изобретения заключается в том, что лазерный спектрометр магнитного резонанса для исследования свойств веществ, не возмущенных процедурой измерения, содержит лазерный источник света, входной поляризационный элемент, через который свет от лазерного источника проходит на образец, размещенный в магните, поляризационный элемент регистрации, через который вторичное излучение от образца проходит на оптический детектор, устройство регистрации спектра и тракт высокой частоты, при этом тракт высокой частоты расположен между оптическим детектором и устройством регистрации спектра.

Использование: для количественного определения содержания фосфолипидов в подсолнечном лецитине. Сущность изобретения заключается в том, что имитатор сигналов свободной прецессии ядерного магнитного резонанса и спинового эха от масла и фосфолипидов в подсолнечном лецитине включает полиметилсилоксановую жидкость марки ПМС-5000 с временем спин-спиновой релаксации 130-160 мс в количестве 1,39-3,75 г, полиэтилсилоксановую жидкость марки ПЭС-5 с временем спин-спиновой релаксации 30-40 мс в количестве 0,35-0,94 г и натуральный латекс с временем спин-спиновой релаксации 2-4 мс в количестве 2,68 г.

Использование: для обнаружения и распознавания веществ методом ядерного квадрупольного резонанса. Сущность изобретения заключается в том, что устройство для обнаружения и распознавания веществ методом ядерного квадрупольного резонанса содержит высокочастотный генератор, индикатор, последовательно соединенные импульсный модулятор, первую катушку индуктивности, датчик сигнала, малошумящий усилитель, логарифмический усилитель и амплитудный детектор, причем управляющий вход импульсного модулятора объединен со стробирующим входом малошумящего усилителя и подключен к выходу генератора модулирующих импульсов, делитель сигнала, первый и второй управляемые аттенюаторы, первый и второй управляемые фазовращатели, вторая катушка индуктивности и осциллограф, а датчик сигнала выполнен в виде вычитающего трансформатора, при этом делитель сигнала, первый управляемый аттенюатор и первый управляемый фазовращатель последовательно соединены и включены между выходом модулятора и входом первой катушки индуктивности, второй управляемый аттенюатор, второй управляемый фазовращатель и вторая катушка индуктивности последовательно соединены, причем вход второго управляемого фазовращателя соединен со вторым выходом делителя сигнала, выход генератора модулирующих импульсов подключен к управляющим входам индикатора и осциллографа, а датчик сигнала индуктивно связан с первой и второй катушками индуктивности, при этом дополнительно введены блок формирования управляющих импульсов, синхронный детектор и интегратор, причем вход блока формирования управляющих импульсов подключен к выходу генератора модулирующих импульсов, первые три выхода блока формирования управляющих импульсов подключены к соответствующим управляющим входам высокочастотного генератора, а четвертый выход блока формирования управляющих импульсов подключен к управляющему входу синхронного детектора, сигнальный вход которого соединен с выходом амплитудного детектора, а выход через интегратор подключен к входу индикатора.

Использование: для одновременного количественного определения глицерина и ацетата калия в водном растворе методом 1Н ЯМР. Сущность изобретения заключается в том, что осуществляют 12-кратное разбавление исследуемого раствора, получают спектр при следующих параметрах: время отклика - 5 сек; длина радиочастотного импульса - 3,3 μсек (10 град); релаксационная задержка - 10 сек; количество накоплений - 16, затем в спектре 1Н ЯМР определяют интегральную интенсивность сигналов, после чего по полученным значениям интегралов в диапазонах химических сдвигов 1,8-2,0; 3,4-3,8 и 4,6-4,9 м.д. рассчитывают молярное и масс-процентное содержание каждого компонента. Технический результат: обеспечение возможности высокой точности количественного определения глицерина и ацетата калия в водном растворе, а также уменьшение количества анализируемых проб и уменьшение времени на проведение анализа. 4 ил., 1 табл.
Наверх