Устройство ориентации космического аппарата по звездам

Изобретение относится к области космической навигации и касается устройства ориентации космического аппарата по звездам. Устройство включает в себя корпус, объектив, центральный модуль, электронную единую плату, гибкие участки электронной единой платы, термоэлектрический охладитель Пельтье, пластину, выполняющую функцию крышки корпуса, бленду, неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания и матричный приемник терагерцового излучения. Неохлаждаемый матричный приемник ИК-излучения соединен прямой связью с матричным приемником терагерцового излучения. Неохлаждаемый матричный приемник ИК-излучения и матричный приемник терагерцового излучения прижаты к основанию корпуса. Технический результат заключается в улучшении качества сигналов, повышении стабильности работы устройства и обеспечении возможности проведения измерений в реальном времени в терагерцовой области спектра. 1 ил.

 

Изобретение относится к космической навигации и может быть использовано для оперативного точного определения ориентации космического аппарата относительно неподвижной системы координат.

Известно своим практическим применением устройство [1]. Принцип работы данного устройства основан использовании комплекса блоков обработки данных.

Недостатками данного устройства являются большие габариты из-за наличия нескольких блоков и плохой отвод тепла.

Наиболее близким по технической сущности является устройство [2], принцип работы которого основан на использовании колодезной компановки датчика, в которой оптическая система и бленда объединены в центральный модуль, а также на использовании термоэлектрического охладителя Пельтье.

Применение подобных приборов ограничивается:

- относительно не высоким качеством требуемых сигналов с матричного приемника излучения, отсутствия возможности проведения в реальном времени измерений интенсивности электромагнитного излучения в терагерцовой области с пространственным разрешением как в односпектральном, так и в многоспектральном режимах, а также с поляризационным разрешением.

Задачей изобретения является создание устройства, обеспечивающего возможность устойчивой работы бленды, получения качественных требуемых сигналов приема-передачи, проведения в реальном времени измерений интенсивности электромагнитного излучения в терагерцовой области. Это представляется возможным с введением в схему устройства неохлаждаемого матричного приемника ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания и матричного приемника терагерцового излучения [3, 4].

Требуемый технический результат достигается тем, что предлагаемое устройство содержит корпус, оптическую систему (объектив), бленду, неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания, центральный модуль, электронную единую плату, гибкие участки электронной единой платы, термоэлектрический охладитель Пельтье, пластину, выполняющую функцию крышки корпуса и матричный приемник терагерцового излучения.

На фиг. 1 показан возможный вариант предлагаемого устройства, который содержит:

1 - корпус

2 - оптическую систему (объектив)

3 - бленду

4 - неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания

5 - центральный модуль

6 - электронная единая плата

7 - гибкие участки электронной единой платы

8 - термоэлектрический охладитель Пельтье

9 - пластина, выполняющую функцию крышки корпуса

10 - матричный приемник терагерцового излучения.

Устройство ориентации космического аппарата по звездам работает следующим образом:

Оптическая система 2 и бленда 3 объединены в центральный модуль 5, вставленный внутрь корпуса 1. Центральный модуль 5 можно разбить на 2 части: первую - выступает за пределы корпуса 1 и включает в свой состав верхнюю часть бленды 3 и вторую- расположенную внутри корпуса 1 и содержащую нижнюю часть бленды 3 и оптическую систему (объектив) 2. При этом бленда 3 является держателем оптической системы 2. Между первой и второй частями имеется пластина 9, перпендикулярная оси датчика, выполняющая функцию крышки корпуса 9. Единая электронная плата 6, соединена перемычками из гибких верхних слоев 7 по которым передается сигнал. Наличие гибких перемычек 7 на электронной единой плате 6 позволяет принимать ей объемную форму. Единая электронная плата 6 размещена вокруг центрального модуля 5 и закреплена к боковым стенкам и основанию корпуса винтами. Плата включает гибкие участки, по которым она изогнута таким образом, что основные тепловыделяющие элементы прижаты к боковым стенкам корпуса, а неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричный приемник терагерцового излучения 10 - к основанию корпуса.

Общий рост теплового тока и связанных с ним шумов, вызываемый воздействием энергичных космических частиц на неохлаждаемый матричный приемник ИК-излучения основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричный приемник терагерцового излучения 10 уменьшается путем охлаждения. Охлаждение осуществляется с помощью термоэлектрического охладителя Пельтье 8, установленных снизу неохлаждаемого матричного приемника ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричного приемника терагерцового излучения 10.

Часть гибкой платы на которой расположены неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричного приемника терагерцового излучения 10 расположена у основания корпуса и имеет наилучшие условия для отвода тепла. На неохлаждаемом матричном приемнике ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричном приемнике терагерцового излучения 10 снизу установлен термоэлектрический охладитель Пельтье 8, контактирующие через теплопроводящую пасту или прокладку с приемником и основанием.

Для оптимального охлаждения остальных тепловыделяющих элементов микросхем они размещаются на объемно-сложенной единой электронной плате 6, вставленной в корпус 1 датчика так, чтобы иметь контакт с боковыми стенками корпуса. Гибкие перемычки платы 7 позволяют перемещаться ее основным частям в необходимых пределах для надежного контакта с теплоотводящими стенками и основанием. Неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричный приемник терагерцового излучения 10 позволяют улучшить качество требуемых сигналов приема-передачи, и обеспечить проведение в реальном времени измерений интенсивности электромагнитного излучения в терагерцовой области, чем обеспечивают стабильную работу устройства в целом, а термоэлектрический охладитель Пельтье 8 позволяет достичь оптимального охлаждения тепловыделяющих элементов платы в целом. Матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания 4 и матричный приемник терагерцового излучения 10, соединены прямой связью между собой.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Ru 111280, 2011 г.

2. Ru 2577558, 2015 г.

3. Elibrary.ru/item.asp

4. Ru 2414688, 2010 г.

Устройство ориентации космического аппарата по звездам, состоящее из корпуса, оптической системы (объектива), центрального модуля, электронной единой платы, гибких участков электронной единой платы, термоэлектрического охладителя Пельтье, пластины, выполняющей функцию крышки корпуса, бленды, отличающееся тем, что в него дополнительно введены неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания и матричный приемник терагерцового излучения, причем неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания соединен прямой связью с матричным приемником терагерцового излучения, при этом неохлаждаемый матричный приемник ИК-излучения на основе термопневматического микромеханического преобразователя с оптоэлектронной системой считывания и матричный приемник терагерцового излучения прижаты к основанию корпуса.



 

Похожие патенты:

Изобретение относится к теплотехнике и может быть использовано для обеспечения эффективного отвода тепла от тепловыделяющих объектов, например от электронных компонентов, установленных на единой печатной плате в электронном модуле.

Изобретение относится к модулю рассеивания тепла, в частности к модулю рассеивания тепла с предпочтительной эффективностью рассеивания тепла, блоку видеокарты и электронному устройству, использующему модуль рассеивания тепла.

Изобретение относится к системам охлаждения, относящимся к силовому набору. Технический результат - решение проблем технического обслуживания, связанных с системами тепловой защиты рабочей поверхности, путем обеспечения возможности быстрого ремонта и замены в процессе эксплуатации теплоизоляционных элементов, обеспечивающих легкий доступ, модификацию и оптимизацию системы охлаждения, что повышает живучесть.

Изобретение относится к охлаждающему устройству для электрического устройства и к электрическому устройству, в частности автоматическому выключателю, содержащему такое охлаждающее устройство.

Изобретение относится к электронному устройству, содержащему электронные модули с жидкостным охлаждением, и способам для быстрого удаления и/или замены электронных модулей.

Изобретение относится к области радиоэлектроники и предназначено для отвода тепла от теплонагруженных элементов электронной радиоаппаратуры в герметичных и негерметичных отсеках на борту летательных аппаратов, работающих в жестких климатических условиях, и в условиях воздействия вибрационных и ударных нагрузок.

Изобретение относится к теплотехнике и может быть использовано для обеспечения эффективного отвода тепла тепловыделяющих объектов, например от электронных компонентов, установленных на единой печатной плате в электронном модуле.

Изобретение относится к области электроники и электротехники и может быть использовано для обеспечения эффективного отвода тепла от тепловыделяющих компонентов, размещенных преимущественно на единой плате, выполненной, например, в виде металлического листа или металлической печатной платы.

Изобретение касается охлаждения электронного устройства, содержащего электронный отсек, образованный корпусом и, по меньшей мере, одной электронной платой, вставленной в корпус.

Изобретение относится к металлокерамической связанной подложке и, в частности, к объединенной подложке с жидкостным охлаждением, и к способу ее изготовления. Технический результат - уменьшение затрат на материалы и изготовление, и уменьшение изгиба (деформации формы), повышение прочности и теплоизлучающей производительности.

Изобретение относится к космической технике, более конкретно к системам навигации искусственных спутников Земли (ИСЗ). Система навигации ИСЗ содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в начальные параметры движения центра масс (ПДЦМ) ИСЗ и блок прогнозирования ПДЦМ.

Изобретение относится к области космической навигации и касается устройства измерения угловых координат солнца. Устройство состоит из полусферического мениска с интерференционным фильтром на внешней поверхности и матированной внутренней поверхностью, объектива, отсекающего светофильтра, матричного фотоприемника, линейчатого фотоприемника формата 288×4 с двунаправленным режимом временной задержки и накопления, блока управления, обработки и расчета, программируемого микропроцессора с графическим редактором и устройства сравнения.

Изобретение относится к области выявления источников ложных навигационных сигналов навигационной аппаратуре потребителей (НАП) глобальной навигационной системы связи (ГНСС).

Изобретение относится к космической технике. Способ управления передвижением космонавта к идентифицируемым объектам на космической станции включает определение параметров текущего положения космонавта и формирование команд на передвижение космонавта к идентифицируемым объектам.

Изобретение относится к спутниковым системам навигационных космических аппаратов (НКА). Cлужебная информация выделяется в первой приемопередающей антенне (ППА 1), усиливается в приемном устройстве (1) и попадает через блоки (2), (3), (4), (11) в бортовой центральный вычислительный комплекс (БЦВК) (12).

Изобретение относится к области радиотехники, вычислительной техники, связи и глобальных навигационных спутниковых систем и может быть использовано в гражданской авиации.

Изобретение может быть использовано для построения местной вертикали по изображению горизонта Земли при ориентации и навигации космических летательных аппаратов.

Изобретение относится к области бортового информационно-навигационного оборудования космических аппаратов и предназначено для формирования и излучения навигационных радиосигналов системы ГЛОНАСС, формирования, излучения, приема данных и измерений по межспутниковой радиолинии, а также для обеспечения автономного функционирования космической спутниковой навигационной группировки ГЛОНАСС.

Изобретение относится к области бортового приборостроения и может найти применение для определения неисправностей гироскопического измерителя вектора угловой скорости (ГИВУС) космического аппарата.

Изобретение может быть использовано для тестирования и настройки мобильных устройств, применяемых в автономных навигационных системах. Устройство включает оптический блок с тремя жестко связанными между собой отражающими гранями, две - наклонные, одна - вертикальная, автоколлимационный блок, содержащий объектив, тест-объект и отсчетный узел, отражательный горизонт, оптически связанный с первой отражательной наклонной гранью и с объективом, с которым связана вторая отражательная наклонная грань, третья грань перпендикулярна оптической оси объектива.
Наверх